Free Access
Volume 55, Number 2, March-April 2021
Page(s) 479 - 506
Published online 15 March 2021
  1. A. Alegria, L. Goitiandia, I. Telleria and J. Colmenero, α-relaxation in the glass-transition range of amorphous polymers. 2. Influence of physical aging on the dielectric relaxation. Macromolecules 30 (1997) 3881–3888. [Google Scholar]
  2. C.S. Antonopoulos, N.V. Kantartzis and I.T. Rekanos, FDTD method for wave propagation in Havriliak-Negami media based on fractional derivative approximation. IEEE T. Magn. 53 (2017) 1–4. [Google Scholar]
  3. P. Bia, D. Caratelli, L. Mescia, R. Cicchetti, G. Maione and F. Prudenzano, FDTD method for wave propagation in Havriliak-Negami media based on fractional derivative approximation. Sign. Process. 107 (2015) 312–318. [Google Scholar]
  4. K. Biswas, G. Bohannan, R. Caponetto, A.M. Lopes and J.A.T. Machado, Fractional-order models of vegetable tissues. In: Fractional-Order Devices. Springer (2017) 73–92. [Google Scholar]
  5. M.F. Causley, P.G. Petropoulos and S. Jiang, Incorporating the Havriliak-Negami dielectric model in the FDTD method. J. Comput. Phys. 230 (2011) 3884–3899. [Google Scholar]
  6. J. Chakarothai, Novel FDTD scheme for analysis of frequency-dependent medium using fast inverse Laplace transform and Prony’s method. IEEE Trans. Antennas Propag. 67 (2019) 6076–6089. [Google Scholar]
  7. G. Cohen and S. Pernet, Finite Elements and Discontinuous Galerkin Methods for Transient Wave Equations. Springer Series in Scientific Computation. Springer (2017). [Google Scholar]
  8. K.S. Cole and R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9 (1941) 341–351. [Google Scholar]
  9. D.W. Davidson and R.H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19 (1951) 1484–1490. [Google Scholar]
  10. P.J.W. Debye, Polar Molecules. Dover (1929). [Google Scholar]
  11. L. Demkowicz, Computing with hp-Adaptive Finite Elements: Vol. 1. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman and Hall/CRC (2006). [Google Scholar]
  12. A.Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations. SciTech, Edison, NJ, USA (2015). [Google Scholar]
  13. A. Garca-Bernabé, R.D. Calleja, M. Sanchis, A. Del Campo, A. Bello and E. Pérez, Amorphous-smectic glassy main chain LCPs. II. Dielectric study of the glass transition. Polymer 45 (2004) 1533–1543. [Google Scholar]
  14. R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53 (2015) 1350–1369. [Google Scholar]
  15. R. Garrappa and G. Maione, Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. Lecture Notes Electr. Eng. 407 (2017) 429–439. [Google Scholar]
  16. R. Garrappa, F. Mainardi and M. Guido, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19 (2016) 1105–1160. [Google Scholar]
  17. A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio and F. Mainardi, A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23 (2020) 9–54. [Google Scholar]
  18. R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014). [Google Scholar]
  19. S. Havriliak and S. Negami, A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. C 14 (1966) 99–117. [Google Scholar]
  20. S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8 (1967) 161–210. [Google Scholar]
  21. C. Huang and L.-L. Wang, An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media. Adv. Comput. Math. 45 (2019) 707–734. [Google Scholar]
  22. D.F. Kelley, Piecewise linear recursive convolution for the FDTD analysis of propagation through linear isotropic dispersive dielectrics. Ph.D. thesis, Pennsylvania State University (1999). [Google Scholar]
  23. D.F. Kelley, T.J. Destan and R.J. Luebbers, Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. IEEE T. Antenn. Propag. 55 (2007) 1999–2005. [Google Scholar]
  24. A.A. Kilbas, M. Saigo and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. F. 15 (2004) 31–49. [Google Scholar]
  25. J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics. Springer (2013). [Google Scholar]
  26. J. Li, Y. Huang and Y. Lin, Developing finite element methods for Maxwell’s equations in a Cole-Cole dispersive medium. SIAM J. Sci. Comput. 33 (2011) 3153–3174. [Google Scholar]
  27. A.M. Lopes, J.T. Machado and E. Ramalho, Fractional-order model of wine. In: Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Springer (2018) 191–203. [Google Scholar]
  28. C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24 (2002) 161–182. [Google Scholar]
  29. W. McLean, V. Thomée and L.B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69 (1996) 49–69. [Google Scholar]
  30. L. Mescia, P. Bia and D. Caratelli, Fractional derivative based FDTD modeling of transient wave propagation in Havriliak-Negami media. IEEE Trans. Microwave Theory Tech. 62 (2014) 1920–1929. [Google Scholar]
  31. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). [CrossRef] [Google Scholar]
  32. P. Monk, A comparison of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Sci. Stat. Comput. 13 (1992) 1097–1122. [Google Scholar]
  33. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of their Solution and some of their Applications. Academic, San Diego, CA (1999). [Google Scholar]
  34. C. Polk and E. Postow, Handbook of Biological Effects of Electromagnetic Fields. CRC Press (1995). [Google Scholar]
  35. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. J. Yokohama Math. 19 (1971) 7–15. [Google Scholar]
  36. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). [Google Scholar]
  37. G.G. Raju, Dielectrics in Electric Fields. CRC Press, New York (2016). [Google Scholar]
  38. I.T. Rekanos, An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media. IEEE Trans. Antennas Propag. 58 (2012) 3666–3674. [Google Scholar]
  39. I.T. Rekanos, FDTD modeling of Havriliak-Negami media. IEEE Microw. Wirel. Co. 22 (2012) 49–51. [Google Scholar]
  40. I.T. Rekanos, FDTD schemes for wave propagation in Davidson-Cole dispersive media using auxiliary differential equations. IEEE Trans. Antennas Propag. 60 (2012) 1467–1478. [Google Scholar]
  41. T. Repo and S. Pulli, Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass. Ann. Botany 78 (1996) 605–609. [Google Scholar]
  42. A. Schonhals, Fast calculation of the time dependent dielectric permittivity for the Havriliak-Negami function. Acta Polym. 42 (1991) 149–151. [Google Scholar]
  43. J.W. Schuster and R.J. Luebbers, An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation. Proc. IEEE Antennas Propag. Soc. Int. Symp. 4 (1998) 1988–1991. [Google Scholar]
  44. J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer (2011). [Google Scholar]
  45. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (2005). [Google Scholar]
  46. F. Torres, P. Vaudon and B. Jecko, Application of new fractional derivatives to the FDTD modeling of pulse propagation in a Cole-Cole medium. Microwave Opt. Technol. 13 (1996) 300–304. [Google Scholar]
  47. K. Xu and S. Jiang, A bootstrap method for sum-of-poles approximations. J. Sci. Comput. 55 (2013) 16–39. [Google Scholar]
  48. F. Zeng, I. Turner and K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77 (2018) 283–307. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you