Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 1163 - 1198
DOI https://doi.org/10.1051/m2an/2021017
Published online 08 June 2021
  1. M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. [Google Scholar]
  2. M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: M2AN 51 (2017) 321–339. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. [CrossRef] [EDP Sciences] [Google Scholar]
  4. P. Chen, Sparse quadrature for high-dimensional integration with Gaussian measure. ESAIM: M2AN 52 (2018) 631–657. [EDP Sciences] [Google Scholar]
  5. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14 (2014) 601–633. [Google Scholar]
  7. A. Chkifa, A. Cohen and C. Schwab. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. [Google Scholar]
  8. P. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland Publ. (1978). [Google Scholar]
  9. A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [Google Scholar]
  10. A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. [Google Scholar]
  11. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. Appl. 9 (2011) 11–47. [Google Scholar]
  12. J. Dick, F. Kuo and I. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22 (2013) 133–288. [Google Scholar]
  13. J. Dick, C. Irrgeher, G. Leobacher and F. Pillichshammer, On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal. 56 (2018) 684–707. [Google Scholar]
  14. D. Dũng, Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs. Preprint arXiv:1511.03377v5 [math.NA] (2015). [Google Scholar]
  15. D. Dũng, Galerkin approximation for parametric and stochastic elliptic PDEs. Bull. L.N. Gumilyov Eurasian Nat. Univ. Math. Comput. Sci. Mech. Ser. 1 (2018) 76–89. [Google Scholar]
  16. D. Dũng, Linear collocation approximation for parametric and stochastic elliptic PDEs. Sb. Math. 210 (2019) 103–227. [Google Scholar]
  17. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. II. McGraw-Hill (1955). [Google Scholar]
  18. O. Ernst, B. Sprungk and L. Tamellini, Convergence of sparse collocation for functions of countably many Gaussian random variables – with application to lognormal elliptic diffusion problems. SIAM J. Numer. Anal. 56 (2018) 887–905. [Google Scholar]
  19. P. Grisvard, Elliptic Problems in Nonsmooth Domains. In: Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985). [Google Scholar]
  20. M. Gunzburger, C. Webster and G. Zang, Stochastic finite element methods for partial diferential equations with random input data. Acta Numer. 23 (2014) 521–650. [Google Scholar]
  21. A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. Tempone, Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity. Found. Comput. Math. 16 (2016) 1555–1605. [Google Scholar]
  22. A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. Tempone, Multi-index stochastic collocation for random PDEs. Comput. Methods Appl. Mech. Eng. 306 (2016) 95–122. [Google Scholar]
  23. E. Hewitt and K. Stromberg, Real and Abstract Analysis. Springer (1965). [Google Scholar]
  24. V.H. Hoang and C. Schwab, N-term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24 (2014) 796–826. [Google Scholar]
  25. D.S. Lubinsky, A survey of weighted polynomial approximation with exponential weights. Surv. Approx. Theory 3 (2007) 1–105. [Google Scholar]
  26. D.M. Matjila, Bounds for the weighted Lebesgue functions for Freud weights. J. Approx. Theory 79 (1994) 385–406. [Google Scholar]
  27. D.M. Matjila, Convergence of Lagrange interpolation for Freud weights in weighted Lp, 0 < p ≤ 1. In: Nonlinear Numerical Methods and Rational Approximation. Kluwer, Dordrecht (1994) 25–35. [Google Scholar]
  28. F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. [Google Scholar]
  29. C. Schwab and C. Gittelson, Sparse tensor discretizations high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. [Google Scholar]
  30. J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line. J. Inequal. Appl. 1 (1997) 99–123. [Google Scholar]
  31. G. Szegö, Orthogonal Polynomials. In: Vol. 23 of American Mathematical Society Colloquium. American Mathematical Society, Providence, RI (1939). [Google Scholar]
  32. J. Zech, Sparse-grid approximation of high-dimensional parametric PDEs, Dissertation 25683, ETH Zurich (2018). [Google Scholar]
  33. J. Zech and C. Schwab, Convergence rates of high dimensional Smolyak quadrature. ESAIM: M2AN 54 (2020) 1259–1307. [EDP Sciences] [Google Scholar]
  34. J. Zech, D. Dũng and C. Schwab, Multilevel approximation of parametric and stochastic PDEs. Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you