Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 887 - 911
DOI https://doi.org/10.1051/m2an/2021015
Published online 05 May 2021
  1. F. Alabau Boussouira, J.E. Muñoz Rivera and D. da S. Almeida Júnior, Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374 (2011) 481–498. [Google Scholar]
  2. M.O. Alves, L.H. Fatori, M.A. Jorge Silva and R.N. Monteiro, Stability and optimality of decay rate for a weakly dissipative Bresse system. Math. Methods Appl. Sci. 38 (2015) 898–908. [Google Scholar]
  3. K.T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Antes and P.D. Panagiotopoulos, The boundary integral approach to static and dynamic contact problems. In: Vol. 108 of International Series of Numerical Mathematics. Equality and inequality methods. Birkhäuser Verlag, Basel (1992). [Google Scholar]
  5. M. Aouadi and M.I.M. Copetti, Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory. ZAMM Z. Angew. Math. Mech. 96 (2016) 361–384. [Google Scholar]
  6. M. Aouadi, M.I.M. Copetti and J.R. Fernández, A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: M2AN 51 (2017) 759–796. [EDP Sciences] [Google Scholar]
  7. D.N. Arnold, A.L. Madureira and S. Zhang, On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elasticity 67 (2002) 171–185. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Bernardi and M.I.M. Copetti, Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. ZAMM Z. Angew. Math. Mech. 97 (2017) 532–549. [Google Scholar]
  9. A. Berti and M.G. Naso, Unilateral dynamic contact of two viscoelastic beams. Q. Appl. Math. 69 (2011) 477–507. [Google Scholar]
  10. A. Berti, M.I.M. Copetti, J.R. Fernández and M.G. Naso, A dynamic thermoviscoelastic contact problem with the second sound effect. J. Math. Anal. Appl. 421 (2015) 1163–1195. [CrossRef] [Google Scholar]
  11. A. Berti, J.E. Muñoz Rivera and M.G. Naso, A contact problem for a thermoelastic Timoshenko beam. Z. Angew. Math. Phys. 66 (2015) 1969–1986. [Google Scholar]
  12. G. Bonfanti, J.E. Muñoz Rivera and M.G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams. J. Math. Anal. Appl. 345 (2008) 186–202. [Google Scholar]
  13. G. Bonfanti, M. Fabrizio, J.E. Muñoz Rivera and M.G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer. J. Thermal Stresses 33 (2010) 1049–1065. [Google Scholar]
  14. J.E.C. Bresse, Cours de mécanique appliquée, professé a l’École des ponts et chaussées, par M. Bresse. Gauthier-Villars, Paris (1865–1868). [Google Scholar]
  15. M. Campo, M.I.M. Copetti and J.R. Fernández, Dynamic vibrations of a damageable viscoelastic beam in contact with two stops. Numer. Methods Part. Differ. Equ. 29 (2013) 647–666. [Google Scholar]
  16. P.G. Ciarlet, Basic error estimates for elliptic problems. In: Vol. II of Handbook of numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 17–351. [Google Scholar]
  17. M.I.M. Copetti, Finite element approximation to a quasi-static thermoelastic problem to the contact of two rods. Appl. Numer. Math. 44 (2003) 31–47. [Google Scholar]
  18. M.I.M. Copetti, Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. M2AN. Math. Model. Numer. Anal. 38 (2004) 691–706. [Google Scholar]
  19. M.I.M. Copetti and D.A. French, Numerical approximation and error control for a thermoelastic contact problem. Appl. Numer. Math. 55 (2005) 439–457. [Google Scholar]
  20. A.D. de Pater and J.J. Kalker, The Mechanics of the Contact Between Deformable Bodies. Delft University Press, Delft (1975). [Google Scholar]
  21. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). [Google Scholar]
  22. C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems. In: Vol. 270 of Pure and Applied Mathematics (Boca Raton). Variational Methods and Existence Theorems. Chapman & Hall/CRC, Boca Raton, FL (2005). [Google Scholar]
  23. T. El Arwadi and W. Youssef, On the stabilization of the Bresse beam with Kelvin–Voigt damping. To appear in: Appl. Math. Opt. https://doi.org/10.1007/s00245-019-09611-z (2019). [Google Scholar]
  24. T. el Arwadi, M.I.M. Copetti and W. Youssef, On the theoretical and numerical stability of the thermoviscoelastic Bresse system. ZAMM Z. Angew. Math. Mech. 99 (2019). [CrossRef] [Google Scholar]
  25. L.H. Fatori and J.E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75 (2010) 881–904. [Google Scholar]
  26. M. Frémond, Contact with adhesion. Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988) 157–185. [Google Scholar]
  27. M. Frémond, Non-Smooth Thermomechanics. Springer-Verlag, Berlin (2002). [CrossRef] [Google Scholar]
  28. W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377–398. [CrossRef] [MathSciNet] [Google Scholar]
  29. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. In: Vol. 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). [Google Scholar]
  30. J.U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Methods Appl. Sci. 13 (1990) 55–79. [Google Scholar]
  31. K.L. Kuttler and M. Shillor, Vibrations of a beam between two stops. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 8 (2001) 93–110. [Google Scholar]
  32. A. Labuschagne, N.F.J. van Rensburg and A.J. van der Merwe, Comparison of linear beam theories. Math. Comput. Modelling 49 (2009) 20–30. [Google Scholar]
  33. Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009) 54–69. [Google Scholar]
  34. J.E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods. J. Math. Anal. Appl. 217 (1998) 423–458. [Google Scholar]
  35. M. Nakao and J.E. Muñoz Rivera, The contact poblem in thermoviscoelastic materials. J. Math. Anal. Appl. 264 (2001) 522–545. [Google Scholar]
  36. F.G. Pfeiffer, Applications of unilateral multibody dynamics. Phil. Trans. R. Soc. Lond. A 359 (2001) 2609–2628. [Google Scholar]
  37. M.L. Santos and D. da S. Almeida Júnior, Numerical exponential decay to dissipative Bresse system. J. Appl. Math. (2010). [Google Scholar]
  38. M.E. Stavroulaki and G.E. Stavroulakis, Unilateral contact applications using fem software. Int. J. Appl. Math. Comput. Sci. 12 (2002) 115–125. [Google Scholar]
  39. A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51 (2010). [Google Scholar]
  40. W. Youssef, Contrôle et stabilisation de systèmes élastiques couplés, Thesis (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you