Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 1239 - 1269
DOI https://doi.org/10.1051/m2an/2021019
Published online 08 June 2021
  1. E. Arian, M. Fahl and E.W. Sachs, Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000). http://www.dtic.mil/docs/citations/ADA377382. [Google Scholar]
  2. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation’’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [Google Scholar]
  3. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000) 113–132. [Google Scholar]
  4. O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44 (2009) 3–25. [Google Scholar]
  5. P. Benner, A. Cohen, M. Ohlberger and K. Willcox, editors. Model Reduction and Approximation. In: Vol. 15 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2017). Theory and algorithms. [Google Scholar]
  6. P. Benner, M. Ohlberger, A. Patera, G. Rozza and K. Urban, editors. Model Reduction of Parametrized Systems. In: Vol. 17 of Modeling, Simulation and Applications. Springer-Verlag GmbH (2017). [Google Scholar]
  7. M. Bergmann and L. Cordier, Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227 (2008) 7813–7840. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bernreuther, G. Müller and S. Volkwein, Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: To Appear in New Trends in PDE Constrained Optimization (2020). [Google Scholar]
  9. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Buhr, C. Engwer, M. Ohlberger and S. Rave, A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014 (2014) 4094–4102. [Google Scholar]
  11. A. Buhr, C. Engwer, M. Ohlberger and S. Rave, ArbiLoMod, a simulation technique designed for arbitrary local modifications. SIAM J. Sci. Comput. 39 (2017) A1435–A1465. [Google Scholar]
  12. E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117 (2015) 3–44. [Google Scholar]
  13. S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. [Google Scholar]
  14. X. Chen, S. Akella and I.M. Navon, A dual-weighted trust-region adaptive POD 4-D Var applied to a finite-volume shallow water equations model on the sphere. Int. J. Numer. Methods Fluids 68 (2012) 377–402. [Google Scholar]
  15. D. Clever, J. Lang, S. Ulbrich and C. Ziems, Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers. Springer Basel, Basel (2012) 51–74. [Google Scholar]
  16. A.R. Conn, N.I.M. Gould and P.L. Toint, Trust Region Methods. MOS-SIAM Series on Optimization Society for Industrial and Applied Mathematics (2000). [Google Scholar]
  17. L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50 (2012) 287–305. [CrossRef] [Google Scholar]
  18. M.A. Dihlmann and B. Haasdonk, Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput. Optim. App. 60 (2015) 753–787. [Google Scholar]
  19. M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969. [CrossRef] [Google Scholar]
  20. J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Garmatter, B. Haasdonk and B. Harrach, A reduced basis Landweber method for nonlinear inverse problems. Inverse Prob. 32 (2016) 035001. [Google Scholar]
  22. C. Geuzaine and J.-F. Remacle, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. [Google Scholar]
  23. C. Gräßle, M. Gubisch, S. Metzdorf, S. Rogg and S. Volkwein, POD basis updates for nonlinear PDE control. at – Automatisierungstechnik 65 (2017) 298–307. [Google Scholar]
  24. M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Math. Acad. Sci. Paris 349 (2011) 873–877. [Google Scholar]
  25. M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. In: Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA (2017) 3–63. [Google Scholar]
  26. B. Haasdonk, Convergence rates of the POD-greedy method. ESAIM: M2AN 47 (2013) 859–873. [CrossRef] [EDP Sciences] [Google Scholar]
  27. B. Haasdonk, Reduced basis methods for parametrized PDEs: a tutorial introduction for stationary and instationary problems. Model Reduction Approximation: Theory Algorithms 15 (2017) 65. [Google Scholar]
  28. B. Haasdonk, M. Dihlmann and M. Ohlberger, A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17 (2011) 423–442. [Google Scholar]
  29. M. Heinkenschloss and L.N. Vicente, Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12 (2002) 283–302. [Google Scholar]
  30. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer International Publishing (2016). [Google Scholar]
  31. C. Himpe and M. Ohlberger, Cross-gramian-based combined state and parameter reduction for large-scale control systems. Math. Probl. Eng. 13 (2014) 843869. [Google Scholar]
  32. C. Himpe and M. Ohlberger, Data-driven combined state and parameter reduction for inverse problems. Adv. Comput. Math. 41 (2015) 1343–1364. [Google Scholar]
  33. M. Hintermüller, M. Hinze and R.H.W. Hoppe, Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints. J. Comput. Math. 30 (2012) 101–123. [Google Scholar]
  34. M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. App. 39 (2008) 319–345. [Google Scholar]
  35. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer, Netherlands (2009). [Google Scholar]
  36. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants. C. R. Math. 345 (2007) 473–478. [Google Scholar]
  37. E. Kammann, F. Tröltzsch and S. Volkwein, A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: M2AN 47 (2013) 555–581. [CrossRef] [EDP Sciences] [Google Scholar]
  38. M. Kärcher, Z. Tokoutsi, M.A. Grepl and K. Veroy, Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75 (2018) 276–307. [Google Scholar]
  39. T. Keil, L. Mechelli, M. Ohlberger, F. Schindler and S. Volkwein, Software for NCD corrected TR-RB approach for PDE constrained optimization. (2020). DOI: 10.5281/zenodo.3897230. [Google Scholar]
  40. C.T. Kelley, Iterative Methods for Optimization. Society for Industrial and Applied Mathematics (1999). [CrossRef] [Google Scholar]
  41. C. Lieberman, K. Willcox and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32 (2010) 2523–2542. [Google Scholar]
  42. W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. [CrossRef] [Google Scholar]
  43. R. Milk, S. Rave and F. Schindler, pyMOR – Generic Algorithms and Interfaces for Model Order Reduction. SIAM J. Sci. Comput. 38 (2016) S194–S216. [Google Scholar]
  44. F. Negri, G. Rozza, A. Manzoni and A. Quateroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. [Google Scholar]
  45. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). [Google Scholar]
  46. M. Ohlberger and F. Schindler, Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37 (2015) A2865–A2895. [Google Scholar]
  47. M. Ohlberger and F. Schindler, Non-conforming localized model reduction with online enrichment: towards optimal complexity in PDE constrained optimization. In: Vol. 200 ofFinite Volumes for Complex Applications VIII– Hyperbolic, Elliptic and Parabolic Problems. Springer Proc. Math. Stat. Springer, Cham (2017) 357–365. [Google Scholar]
  48. M. Ohlberger, M. Schaefer and F. Schindler, Localized model reduction in PDE constrained optimization. Int. Ser. Numer. Math. 169 (2018) 143–163. [Google Scholar]
  49. I.B. Oliveira and A.T. Patera, Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8 (2007) 43–65. [Google Scholar]
  50. E. Qian, M. Grepl, K. Veroy and K. Willcox, A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput. 39 (2017) S434–S460. [Google Scholar]
  51. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations, 1st edition. La Matematica per il 3+2. Springer International Publishing (2016). [Google Scholar]
  52. R. Rannacher, On the adaptive discretization of PDE-based optimization problems. In: PDE Constrained Optimization. Springer (2006). [Google Scholar]
  53. S. Rogg, S. Trenz and S. Volkwein, Trust-region POD using a-posteriori error estimation for semilinear parabolic optimal control problems. Konstanzer Schriften in Mathematik No. 359 (2017)http://nbn-resolving.de/urn:nbn:de:bsz:352-0-401106. [Google Scholar]
  54. A. Rösch and D. Wachsmuth, A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120 (2012) 733–762. [Google Scholar]
  55. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2007) 1. [Google Scholar]
  56. E.W. Sachs and M. Schu, A-priori error estimates for reduced order models in finance. ESAIM: M2AN 47 (2013) 449–469. [CrossRef] [EDP Sciences] [Google Scholar]
  57. Y. Yue and K. Meerbergen, Accelerating optimization of parametric linear systems by model order reduction. SIAM J. Optim. 23 (2013) 1344–1370. [Google Scholar]
  58. M.J. Zahr and C. Farhat, Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Int. J. Numer. Methods Eng. 102 (2015) 1111–1135. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you