Open Access
Issue
ESAIM: M2AN
Volume 55, Number 4, July-August 2021
Page(s) 1347 - 1374
DOI https://doi.org/10.1051/m2an/2021021
Published online 07 July 2021
  1. B. Bourdin, G.A. Francfort and J.J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. [Google Scholar]
  2. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag (2002). [Google Scholar]
  3. S. Burke, C. Ortner and E. Süli, An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23 (2013) 1663–1697. [Google Scholar]
  4. G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165–225. [Google Scholar]
  5. B.J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models. Technische Mechanik, Ruhr-Universität Bochum 28 (2008) 43–52. [Google Scholar]
  6. B.J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Methods Biomed. Eng. 27 (2011) 1199–1210. [Google Scholar]
  7. M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
  8. E. Emmrich, Gewöhnliche und Operatordifferentialgleichungen. Vieweg, Berlin (2004). [Google Scholar]
  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [Google Scholar]
  10. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in L (L2) and L (L). SIAM J. Numer. Anal. 32 (1995) 706–740. [Google Scholar]
  11. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [Google Scholar]
  12. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. Rairo M.M.a.N 19 (1985) 611–643. [Google Scholar]
  13. D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. ESAIM: M2AN 27 (1993) 35–54. [CrossRef] [EDP Sciences] [Google Scholar]
  14. G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [Google Scholar]
  15. G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. 56 (2003) 1465–1500. [Google Scholar]
  16. A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. (1921). [Google Scholar]
  17. K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. [Google Scholar]
  18. R. Haller-Dintelmann, H. Meinlschmidt and W. Wollner, Higher regularity for solutions to elliptic systems in divergence form subject to mixed boundary conditions. Annali di Matematica Pura ed Applicata (2018). [Google Scholar]
  19. M. Holtmannspötter and A. Rösch, A priori error estimates for the space-time finite element approximation of a non-smooth optimal control problem governed by a coupled semilinear PDE-ODE system. Preprint; arXiv: 2004.05837 (2020). [Google Scholar]
  20. M. Holtmannspötter, A. Rösch and B. Vexler, A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Preprint; arXiv:2004.04448 (2019). [Google Scholar]
  21. P. Junker, S. Schwarz, D. Jantos and K. Hackl, A fast and robust numerical treatment of a gradient-enhanced model for brittle damage. Int. J. Multiscale Comput. Eng. 17 (2019) 151–180. [Google Scholar]
  22. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models and Methods Appl. Sci. 23 (2013) 565–616. [Google Scholar]
  23. J. Makowski, K. Hackl and H. Stumpf, The fundamental role on nonlocal and local balance laws of material forces in finite elastoplasticity and damage mechanics. Int. J. Solids Struct (2006). [Google Scholar]
  24. D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008) 1150–1177. [Google Scholar]
  25. C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness. ZAA 38 (2019) 249–286. [Google Scholar]
  26. C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit. ZAA 38 (2019) 439–474. [Google Scholar]
  27. M. Mohammadi and W. Wollner, A priori error estimates for a linearized fracture control problem (2018). DOI: 10.1007/s11081-020-09574-z. [Google Scholar]
  28. B. Nedjar, Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects. Int. J. Solids Struct. 38 (2001) 5421–5451. [Google Scholar]
  29. I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numerische Mathematik 120 (2011) 345–386. [Google Scholar]
  30. R. Peerlings, Enhanced damage modeling for fracture and fatigue. Ph.D. thesis, Technische Universiteit Eindhoven (1999). [Google Scholar]
  31. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter (1996). [Google Scholar]
  32. L.M. Susu, Analysis and optimal control of a damage model with penalty. Ph.D. thesis, Technische Universität Dortmund (2017). [Google Scholar]
  33. L.M. Susu, Optimal control of a viscous two-field gradient damage model. GAMM-Mitteilungen 2018 40 (2018) 287–311. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you