Free Access
Issue
ESAIM: M2AN
Volume 55, Number 4, July-August 2021
Page(s) 1439 - 1460
DOI https://doi.org/10.1051/m2an/2021026
Published online 13 July 2021
  1. R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd edition. Addison-Wesley (1987). [Google Scholar]
  2. J. Baez and J.P. Muniain, Gauge Fields, Knots and Gravity. Series on Knots and Everything. World Scientific (1994). [Google Scholar]
  3. D. Bleecker, Gauge Theories and Variational Principles. Addison-Wesley (1981). [Google Scholar]
  4. A. Bossavit, How weak is the ‘weak solution’ in finite element methods? IEEE Trans. Magn. 34 (1998) 2429–2432. [Google Scholar]
  5. A. Bossavit, On the geometry of electromagnetism, 1. Affine space. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 17–28. [Google Scholar]
  6. A. Bossavit, On the geometry of electromagnetism, 2. Geometrical objects. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 114–123. [Google Scholar]
  7. A. Bossavit, On the geometry of electromagnetism, 3. Integration, stokes, faraday’s law. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 223–240. [Google Scholar]
  8. A. Bossavit, On the geometry of electromagnetism, 4. Maxwell’s house. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 318–326. [Google Scholar]
  9. A. Bossavit, Computational electromagnetism and geometry: building a finite-dimensional “Maxwell’s house”. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 150–159. [Google Scholar]
  10. A. Bossavit, Computational electromagnetism and geometry: convergence. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 401–408. [Google Scholar]
  11. A. Bossavit, Computational electromagnetism and geometry: network constitutive laws. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 294–301. [Google Scholar]
  12. A. Bossavit, Computational electromagnetism and geometry: from degrees of freedom to fields. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 102–109. [Google Scholar]
  13. A. Bossavit, Computational electromagnetism and geometry: some questions and answers. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 372–377. [Google Scholar]
  14. A. Bossavit, Computational electromagnetism and geometry: the “Galerkin hodge’’. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 203–209. [Google Scholar]
  15. A. Bossavit, ‘Generalized finite differences’ in computational electromagnetics. edited by F.L. Teixeira. In: Progress in Electromagnetics Research, PIER, EMW, Cambridge, MA (2001) 45–64. [Google Scholar]
  16. A. Bossavit, On the notion of anisotropy of constitutive laws: some implications of the ‘Hodge implies metric’ result. Compel 20 (2001) 233–239. [Google Scholar]
  17. A. Bossavit and L. Kettunen, Yee-like schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Numer. Model. Electron. Networks Devices Fields 12 (1999) 129–142. [Google Scholar]
  18. A. Bossavit and L. Kettunen, Correction to ‘Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches’. IEEE Trans. Magn. 36 (2000) 4050. [Google Scholar]
  19. A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36 (2000) 861–867. [Google Scholar]
  20. L. Codecasa and M. Politi, Explicit, consistent, and conditionally stable extension of fd-td to tetrahedral grids by fit. IEEE Trans. Magn. 44 (2008) 1258–1261. [Google Scholar]
  21. H. Flanders, Differential Forms with Application to the Physical Sciences. Dover (1989). [Google Scholar]
  22. T. Frankel, The Geometry of Physics, an Introduction, 3rd edition. Cambridge Univ. Press, Cambridge, USA (2012). [Google Scholar]
  23. A. Frölicher and A. Nijenhuis, Theory of vector–valued differential forms: part I. Derivations in the graded ring of differential forms. Indagationes Mathematicae (Proceedings) 59 (1956) 338–350. [Google Scholar]
  24. A.N. Hirani, Discrete exterior calculus. PhD thesis, Caltech, Pasadena, California, 5 (2003). [Google Scholar]
  25. W.V.D. Hodge, The Theory and Applications of Harmonic Integrals. Cambridge Univ. Press, Cambridge, USA (1941). [Google Scholar]
  26. E. Kanso, M. Arroyo, Y. Tong, A. Yavari, J.E. Marsden and M. Desbrun, On the geometric character of stress in continuum mechanics. Z. Angew. Math. Phys. 58 (2007) 1–14. [Google Scholar]
  27. J. Keäränen, E. Koljonen, T. Tarhasaari and L. Kettunen, Effect of cell type on convergence of wave propagation schemes. IEEE Trans. Magn. 40 (2004) 1452–1455. [Google Scholar]
  28. L. Kettunen, S. Mönkölä, J. Parkkonen and T. Rossi, General conservation law for a class of physics field theories. arXiv:1908.10634. [Google Scholar]
  29. T. Kovanen, T. Tarhasaari and L. Kettunen, Formulation of small-strain magneto-elastic problems. https://arxiv.org/abs/1602.04966. [Google Scholar]
  30. J. Lohi, Discrete exterior calculus and higher order Whitney forms. Master’s thesis, University of Jyväskylä (2019). [Google Scholar]
  31. J. Räbinä, L. Kettunen, S. Mönkölä and T. Rossi, Generalized wave propagation problems and discrete exterior calculus. ESAIM : M2AN 52 (2018) 1195–1218. [EDP Sciences] [Google Scholar]
  32. F. Rapetti and A. Bossavit, Whitney forms of higher degree. SIAM J. Numer. Anal. 47 (2009) 2369–2386. [Google Scholar]
  33. R. Segev and G. Rodnay, Cauchy’s theorem on manifolds. J. Elasticity 56 (1999) 129–144. [Google Scholar]
  34. T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35 (1999) 1494–1497. [Google Scholar]
  35. F. Teixeira and W.C. Chew, Lattice electromagnetic theory from a topological viewpoint. J. Math. Phys. 40 (1999) 169–187. [Google Scholar]
  36. E. Tonti, A direct discrete formulation of field laws: the Cell method. CMES Comput. Model. Eng. Sci. 2 (2001) 237–258. [Google Scholar]
  37. E. Tonti, The Mathematical Structure of Classical and Relativistic Physics. Birkhäuser (2013). [Google Scholar]
  38. T. Weiland, Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model. Electron. Networks Devices Fields 9 (1996) 295–319. [Google Scholar]
  39. H. Whitney, Geometric Integration Theory. Princeton Univ. Press, USA (1957). [Google Scholar]
  40. A. Yavari, On geometric discretization of elasticity. J. Math. Phys. 49 (2008). [Google Scholar]
  41. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [Google Scholar]
  42. K. Yosida, Functional Analysis. Springer-Verlag, Berlin Heidelberg (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you