Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1873 - 1894
DOI https://doi.org/10.1051/m2an/2021042
Published online 17 September 2021
  1. C. Bacuta, J.H. Bramble and J.E. Pasciak, Shift Theorems for the Biharmonic Dirichlet Problem. In: T.F. Chan, Y. Huang, T. Tang, J. Xu, L.A. Ying (eds.) Recent Progress in Computational and Applied PDES. Springer, Boston, MA (2002) 1–26. [Google Scholar]
  2. M.S. Berger and P.C. Fife, Von Kármán equations and the buckling of a thin elastic plate, II plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. [Google Scholar]
  3. H. Blum and R. Rannacher, On mixed finite element methods in plate bending analysis. Comput. Mech. 6 (1990) 221–236. [Google Scholar]
  4. H. Blum, R. Rannacher and R. Leis, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. [Google Scholar]
  5. S.C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A # interior penalty method for a von Kármán plate. Numerische Mathematik 135 (2017) 803–832. [Google Scholar]
  6. S.C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A quadratic # interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50 (2012) 3329–3350. [Google Scholar]
  7. S.C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. [Google Scholar]
  8. S.C. Brenner, L.-Y. Sung and Y. Zhang, Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81 (2012) 1247–1262. [Google Scholar]
  9. F. Brezzi, Finite element approximations of the von Kármán equations. ESAIM: M2AN 12 (1978) 303–312. [Google Scholar]
  10. L.A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 6 (1979) 151–184. [Google Scholar]
  11. C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68 (2014) 2167–2181. [Google Scholar]
  12. C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39 (2019) 167–200. [Google Scholar]
  13. C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. [Google Scholar]
  14. C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal. . Preprint: arXiv:1908.08013 (2020). [Google Scholar]
  15. C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math. 38 (2020) 142–175. [Google Scholar]
  16. P.G. Ciarlet (ed.) The finite element method for elliptic problems, Vol. 4. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  17. P.G. Ciarlet, Mathematical Elasticity: Volume II: Theory of Plates,Vol. 27. Studies in Mathematics and its Applications. Elsevier (1997). [Google Scholar]
  18. J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971) 140–149. [Google Scholar]
  19. D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35 (2014) 1779–1811. [Google Scholar]
  20. R. Glowinski, Lectures on Numerical Methods for Non-linear Variational Problems. Springer-Verlag, Berlin-Heidelberg (2008). [Google Scholar]
  21. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [Google Scholar]
  22. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Vol. 88. Pure and Applied Mathematics. Academic Press (1980). [Google Scholar]
  23. G.H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. [Google Scholar]
  24. G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. [Google Scholar]
  25. G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. [Google Scholar]
  26. E. Miersemann and H.D. Mittelmann, Stability in obstacle problems for the von Kármán plate. SIAM J. Math. Anal. 23 (1992) 1099–1116. [Google Scholar]
  27. T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numerische Mathematik 26 (1976) 255–269. [Google Scholar]
  28. A.D. Muradova and G.E. Stavroulakis, A unilateral contact model with buckling in von Kármán plates. Nonlinear Anal.: Real World Appl. 8 (2007) 1261–1271. [Google Scholar]
  29. K. Ohtake, J.T. Oden and N. Kikuchi, Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 1. a variational principle with penalty. Comput. Methods Appl. Mech. Eng. 24 (1980) 187–213. [Google Scholar]
  30. K. Ohtake, J.T. Oden and N. Kikuchi, Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 2. approximation and numerical analysis. Comput. Methods Appl. Mech. Eng. 24 (1980) 317–337. [Google Scholar]
  31. A. Quarteroni, Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. [Google Scholar]
  32. L. Reinhart, On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numerische Mathematik 39 (1982) 371–404. [Google Scholar]
  33. S.-T. Yau and Y. Gao, Obstacle problem for von Kármán equations. Adv. Appl. Math. 13 (1992) 123–141. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you