Open Access
Volume 55, Number 5, September-October 2021
Page(s) 2101 - 2139
Published online 13 October 2021
  1. A. Ait Hammou Oulhaj, C. Cancès and C. Chainais-Hillairet, Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy. ESAIM: M2AN 52 (2018) 1532–1567. [Google Scholar]
  2. B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. [CrossRef] [Google Scholar]
  3. T. Arbogast, M. Obeyesekere and M.F. Wheeler, Numerical methods for the simulation of flow in root-soil systems. SIAM J. Numer. Anal. 30 (1993) 1677–1702. [Google Scholar]
  4. T. Arbogast, M.F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Bassetto, C. Cancès, G. Enchéry and Q.H. Tran, Robust Newton solver based on variable switch for a finite volume discretization of Richards equation, In: Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples edited by Examples R. Klöfkorn, E. Keilegavlen, F.A. Radu and J. Fuhrmann Vol. 323 of Springer Proceedings in Mathematics & Statistics (2020) 385–394. [Google Scholar]
  6. S. Bassetto, C. Cancès, G. Enchéry and Q.H. Tran, On several numerical strategies to solve Richards’ equation in heterogeneous media with Finite Volumes. Working paper or preprint (2021) [Google Scholar]
  7. K. Brenner and C. Cancès, Improving Newton’s method performance by parametrization: the case of the Richards equation. SIAM J. Numer. Anal. 55 (2017) 1760–1785. [CrossRef] [Google Scholar]
  8. K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597. [Google Scholar]
  9. K. Brenner, M. Groza, L. Jeannin, R. Masson and J. Pellerin, Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media. Comput. Geosci. 21 (2017) 1075–1094. [Google Scholar]
  10. K. Brenner, R. Masson, E.H. Quenjel and J. Droniou, Total velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure. IMA Journal of Numerical Analysis (2021) [Google Scholar]
  11. K. Brenner, R. Masson and E.H. Quenjel, Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media. J. Comput. Phys. 409 (2020) 109357. [Google Scholar]
  12. R.H. Brooks and A.T. Corey, Hydraulic properties of porous media. Hydrol. Paper 7 (1964) 26–28. [Google Scholar]
  13. C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Diff. Equ. Appl. 15 (2008) 427–456. [Google Scholar]
  14. C. Cancès, Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: M2AN 43 (2009) 973–1001. [CrossRef] [EDP Sciences] [Google Scholar]
  15. C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. [Google Scholar]
  16. C. Cancès, F. Nabet and M. Vohralk, Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Math. Comput. 90 (2021) 517–563. [Google Scholar]
  17. V. Casulli and P. Zanolli, A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput. 32 (2010) 2255–2273. [Google Scholar]
  18. C. Chainais-Hillairet, J.-G. Liu and Y.-J. Peng, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM: M2AN 37 (2003) 319–338. [EDP Sciences] [Google Scholar]
  19. G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media. In: Vol. 17 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1986). [Google Scholar]
  20. Z. Chen and R.E. Ewing, Fully discrete finite element analysis of multiphase flow in groundwater hydrology. SIAM J. Numer. Anal. 34 (1997) 2228–2253. [Google Scholar]
  21. Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math. 90 (2001) 215–240. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). [CrossRef] [Google Scholar]
  23. H.-J.G. Diersch and P. Perrochet, On the primary variable switching technique for simulating unsaturated–saturated flows. Adv. Water Resour. 23 (1999) 271–301. [Google Scholar]
  24. J. Droniou and R. Eymard, The asymmetric gradient discretisation method, edited by C. Cancès and P. Omnes. In: Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects. Vol. 199 of Springer Proc. Math. Stat. Springer, Cham (2017) 311–319. [Google Scholar]
  25. G. Enchéry, R. Eymard and A. Michel, Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43 (2006) 2402–2422. [CrossRef] [MathSciNet] [Google Scholar]
  26. B.G. Ersland, M.S. Espedal and R. Nybø, Numerical methods for flow in a porous medium with internal boundaries. Comput. Geosci. 2 (1998) 217–240. [Google Scholar]
  27. R. Eymard and T. Gallouët, #-convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 539–562. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation. Comput. Geosci. 3 (1999) 259–294. [Google Scholar]
  29. R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, In: Techniques of Scientific Computing (Part 3) edited by P.G. Ciarlet and J.-L. Lions. Vol. VII of Handbook of Numerical Analysis. North-Holland, Elsevier, Amsterdam (2000) 713–1018. [Google Scholar]
  30. R. Eymard, T. Gallouët, R. Herbin, M. Gutnic and D. Hilhorst, Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies. M3AS: Math. Models Meth. Appl. Sci. 11 (2001) 1505–1528. [Google Scholar]
  31. R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. [CrossRef] [EDP Sciences] [Google Scholar]
  32. R. Eymard, T. Gallouët, C. Guichard, R. Herbin and R. Masson, TP or not TP, that is the question. Comput. Geosci. 18 (2014) 285–296. [CrossRef] [Google Scholar]
  33. R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. Z. Angew. Math. Mech. 94 (2014) 560–585. [Google Scholar]
  34. P.A. Forsyth, Y.S. Wu and K. Pruess, Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Adv. Water Resour. 18 (1995) 25–38. [Google Scholar]
  35. K. Gärtner and L. Kamenski, Why do we need Voronoi cells and Delaunay meshes?In: Numerical Geometry, Grid Generation and Scientific Computing edited by V.A. Garanzha, L. Kamenski and H. Si. Lecture Notes in Computational Science and Engineering. Springer International Publishing, Cham (2019) 45–60. [Google Scholar]
  36. V. Girault, B. Riviere and L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part II: Convergence. Journal of Numerical Mathematics (2021). [Google Scholar]
  37. H. Hoteit and A. Firoozabadi, Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31 (2008) 56–73. [Google Scholar]
  38. M.R. Kirkland, R.G. Hills and P.J. Wierenga, Algorithms for solving Richards equation for variably saturated soils. Water Resour. Res. 28 (1992) 2049–2058. [Google Scholar]
  39. J. Leray and J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51 (1934) 45–78. [CrossRef] [Google Scholar]
  40. F. List and F.A. Radu, A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2016) 341–353. [CrossRef] [Google Scholar]
  41. F. Marinelli and D.S. Dunford, Semianalytical solution to Richards equation for layered porous media. J. Irrig. Drain. Eng. 124 (1998) 290–299. [Google Scholar]
  42. D. McBride, M. Cross, N. Croft, C. Bennett and J. Gebhardt, Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries. Int. J. Numer. Meth. Fluids 50 (2006) 1085–1117. [Google Scholar]
  43. I.S. Pop, F.A. Radu and P. Knabner, Mixed finite elements for the Richards’ equation: linearization procedure. J. Comput. Appl. Math. 168 (2004) 365–373. [Google Scholar]
  44. F.A. Radu and W. Wang, Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media. Nonlin. Anal.: Real World Appl. 15 (2014) 266–275. [Google Scholar]
  45. F.A. Radu, I.S. Pop and P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42 (2004) 1452–1478. [CrossRef] [Google Scholar]
  46. L.A. Richards, Capillary conduction of liquids through porous mediums. Physics 1 (1931) 318–333. [Google Scholar]
  47. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (1980) 892–898. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you