Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1941 - 1961
DOI https://doi.org/10.1051/m2an/2021044
Published online 22 September 2021
  1. M. Barrault, C. Nguyen, A. Patera and Y. Maday, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Sér. I Math. 339 (2004) 667–672. [Google Scholar]
  2. F. Boyer, An introduction to finite volume methods for diffusion problems. In: French-Mexican Meeting on Industrial and Applied Mathematics Villahermosa, Mexico, November 25–29 (2013). [Google Scholar]
  3. S. Brenner and R. Scott, The mathematical theory of finite element methods. Springer Science & Business Media 15 (2007). [Google Scholar]
  4. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [Google Scholar]
  5. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 04. [Google Scholar]
  6. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. [Google Scholar]
  7. F. Casenave, A. Ern and T. Lelièvre, A nonintrusive reduced basis method applied to aeroacoustic simulations. Adv. Comput. Math. 41 (2014) 961–986. [Google Scholar]
  8. R. Chakir, Contribution à l’analyse numérique de quelques problèmes en chimie quantique et mècanique. Ph.D. thesis (2009). [Google Scholar]
  9. R. Chakir, P. Joly, Y. Maday and P. Parnaudeau, A non intrusive reduced basis method: application to computational fluid dynamics. https://hal.archives-ouvertes.fr/hal-00855906 (2013). [Google Scholar]
  10. R. Chakir, Y. Maday and P. Parnaudeau, A non-intrusive reduced basis approach for parametrized heat transfer problems. J. Comput. Phys. 376 (2019) 617–633. [Google Scholar]
  11. A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Preprint arXiv:1502.06797 (2015). [Google Scholar]
  12. L.B. da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer 11 (2014). [Google Scholar]
  13. D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. [Google Scholar]
  14. J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [Google Scholar]
  15. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [Google Scholar]
  16. J. Droniou and N. Nataraj, Improved L2 estimate for gradient schemes and super-convergence of the tpfa finite volume scheme. IMA J. Numer Anal. 3 (2017) 1254–1293. [Google Scholar]
  17. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [Google Scholar]
  18. J. Droniou, R. Eymard, T. Gallouet and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [Google Scholar]
  19. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Springer 82 (2018). [Google Scholar]
  20. R. Eymard, T. Gallouët and R. Herbin, Discretization schemes for linear diffusion operators on general non-conforming meshes, edited by R. Eymard and J.-M. Herard. In: Finite Volumes for Complex Applications V. Wiley (2008). [Google Scholar]
  21. B. Haasdonk and M. Ohlberger, Reduced basis method for explicit finite volume approximations of nonlinear conservation laws. In: Proc. 12th International Conference on Hyperbolic Problems: Theory, Numerics, Application (2008). [Google Scholar]
  22. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016). [Google Scholar]
  23. O. Iliev, Y. Maday and T. Nagapetyan, A Two-grid Infinite-volume/Reduced Basis Scheme for the Approximation of the Solution of Parameter Dependent PDE with Applications the AFFFF Devices. Fraunhofer Institute for Industrial Mathematics, ITWM (2013). [Google Scholar]
  24. A. Kolmogoroff, Über die beste annaherung von funktionen einer gegebenen funktionenklasse. Ann. Math. 37 (1936) 107–110. [Google Scholar]
  25. Y. Maday and R. Chakir, A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent PDE (2009) https://hal.archives-ouvertes.fr/hal-01420726. [Google Scholar]
  26. A. Quarteroni and S. Quarteroni, Numerical Models for Differential Problems. Springer 2 (2009). [Google Scholar]
  27. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer 92 (2015). [Google Scholar]
  28. R. Sanchez, Application des techniques de bases réduites à la simulation des écoulements en milieuxporeux. Université Paris-Saclay – CentraleSupélec (2017). [Google Scholar]
  29. G. Stabile, S. Hijazi, A. Mola, S. Lorenzi and G. Rozza, Pod-galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8 (2017) 210–236. [Google Scholar]
  30. K. Veroy, C. Prud’Homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Sér. I Math. 337 (2003) 619–624. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you