Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2535 - 2566
DOI https://doi.org/10.1051/m2an/2021058
Published online 01 November 2021
  1. D. Adak and S. Natarajan, On the H1 conforming virtual element method for time dependent Stokes equation. Math. Comput. Sci. 15 (2021) 135–154. [Google Scholar]
  2. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics. Academic Press, New York (2003). [Google Scholar]
  3. B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. App. 66 (2013) 376–391. [Google Scholar]
  4. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  5. P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 36–56. [Google Scholar]
  6. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  7. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [Google Scholar]
  8. L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. [Google Scholar]
  9. L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. [Google Scholar]
  10. L. Beirão da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. [Google Scholar]
  11. L. Beirão da Veiga, D. Mora and G. Vacca, The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2019) 990–1018. [Google Scholar]
  12. L. Beirão da Veiga, F. Dassi and A. Russo, A C1 virtual element method on polyhedral meshes. Comput. Math. App. 79 (2020) 1936–1955. [Google Scholar]
  13. L. Beirão da Veiga, F. Dassi and G. Vacca, The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30 (2020) 477–512. [Google Scholar]
  14. G. Ben-Yu, H. Li-Ping and M. De-Kang, On the two-dimensional Navier-Stokes equations in stream function form. J. Math. Anal. App. 205 (1997) 1–31. [Google Scholar]
  15. S.C. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). [Google Scholar]
  16. F. Brezzi and L.D. Marini, Virtual elements for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. [Google Scholar]
  17. E. Cáceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. [Google Scholar]
  18. A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. [Google Scholar]
  19. A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. [Google Scholar]
  20. M. Cayco and R.A. Nicolaides, Finite element technique for optimal pressure recovery from stream function formulation of viscous flows. Math. Comput. 46 (1986) 371–377. [Google Scholar]
  21. C. Chinosi and L.D. Marini, Virtual element method for fourth order problems: L2-estimates. Comput. Math. App. 72 (2016) 1959–1967. [Google Scholar]
  22. A.J. Chorin, Numerical solution for the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [Google Scholar]
  23. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, 2002. [Google Scholar]
  24. F. Dassi and G. Vacca, Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155 (2020) 140–159. [Google Scholar]
  25. E. Foster, T. Iliescu and Z. Wang, A finite element discretization of the stream function formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 261/262 (2013) 105–117. [Google Scholar]
  26. G.N. Gatica, M. Munar and F. Sequeira, A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. [Google Scholar]
  27. V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, 749. Springer-Verlag, Berlin-New York (1979). [Google Scholar]
  28. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  29. P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985). [Google Scholar]
  30. D. Irisarri and G. Hauke, Stabilized virtual element methods for the unsteady incompressible Navier-Stokes equations. Calcolo 56 (2019) 1–21. [Google Scholar]
  31. M.J. Lai, C. Liu and P. Wenston, Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in stream function formulation. Numer. Methods Part. Diff. Equ. 19 (2003) 776–827. [Google Scholar]
  32. A. Linke and L.G. Rebholz, Pressure-induced locking in mixed methods for time-dependent (Navier–)Stokes equations. J. Comput. Phys. 388 (2019) 350–356. [Google Scholar]
  33. X. Liu and Z. Chen, The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45 (2019) 51–74. [Google Scholar]
  34. X. Liu, R. Li and Z. Chen, A virtual element method for the coupled Stokes-Darcy problem with the Beaver–Joseph–Saffman interface condition. Calcolo 56 (2019) 1–28. [Google Scholar]
  35. D. Mora and I. Velásquez, Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. [Google Scholar]
  36. D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. [Google Scholar]
  37. A. Quarteroni and A. Valli, Numerical Aproximation of the Partial Differential Equation. Springer-Verlag, Berlin Heidelberg (1994). [Google Scholar]
  38. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). [Google Scholar]
  39. G. Vacca, An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. [Google Scholar]
  40. G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Part. Diff. Equ. 31 (2015) 2110–2134. [Google Scholar]
  41. J. Zhao, B. Zhang, S. Mao and S. Chen, The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you