Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2349 - 2364
DOI https://doi.org/10.1051/m2an/2021059
Published online 21 October 2021
  1. G. Barrenechea, E. Burman and J. Guzmán, Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow. Math. Models Methods Appl. Sci. 30 (2020) 847–865. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Heidelberg, Springer (2013). [CrossRef] [Google Scholar]
  3. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196 (2007) 853–866. [CrossRef] [Google Scholar]
  4. S. Brenner and R. Scott, The mathematical theory of finite element methods. Springer Science & Business Media (2007). [Google Scholar]
  5. E. Burman, M.A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44 (2006) 1248–1274. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86 (2017) 1643–1670. [Google Scholar]
  7. R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58 (2008) 264–283. [Google Scholar]
  8. H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36 (2016) 796–823. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Appl. Math. Sci. 159, Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  10. N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube and P.W. Schroeder, High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L2 and H(div) methods. Int. J. Numer. Methods Fluids 91 (2019) 533–556. [CrossRef] [Google Scholar]
  11. G. Fu, An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Eng. 345 (2019) 502–517. [CrossRef] [Google Scholar]
  12. B. García-Archilla, V. John and J. Novo, Symmetric pressure stabilization for equal-order finite element approximations to the time-dependent Navier-Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093–1129. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.N. Gatica, A simple introduction to the mixed finite element method. Theory and Applications. Springer Briefs in Mathematics, Springer, London (2014). [Google Scholar]
  14. J. Guzmán, C.W. Shu and F.A. Sequeira, H(div) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. 37 (2017) 1733–1771. [MathSciNet] [Google Scholar]
  15. Y. Han and Y. Hou, Robust error analysis of H(div)-conforming DG method for the time-dependent incompressible Navier-Stokes equations. J. Comput. Appl. Math. 390 (2021) 113365. [CrossRef] [Google Scholar]
  16. T.L. Horváth and S. Rhebergen, A locally conservative and energy-stable finite-element method for the Navier-Stokes problem on time-dependent domains. Int. J. Numer. Methods Fluids 89 (2019) 519–532. [CrossRef] [Google Scholar]
  17. T.L. Horváth and S. Rhebergen, An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains. J. Comput. Phys. 417 (2020) 109577. [CrossRef] [MathSciNet] [Google Scholar]
  18. K.L.A. Kirk and S. Rhebergen, Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81 (2019) 881–897. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.J. Labeur and G.N. Wells, Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 34 (2012) A889–A913. [CrossRef] [Google Scholar]
  20. P.L. Lederer and S. Rhebergen, A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators. SIAM J. Numer. Anal. 8 (2020) 2915–2933. [CrossRef] [MathSciNet] [Google Scholar]
  21. P.L. Lederer, C. Lehrenfeld and J. Schöberl, Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II.. ESAIM: M2AN 53 (2019) 503–522. [CrossRef] [EDP Sciences] [Google Scholar]
  22. C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307 (2016) 339–361. [CrossRef] [Google Scholar]
  23. A. Natale and C.J. Cotter, A variational finite-element discretization approach for perfect incompressible fluids. IMA J. Numer. Anal. 38 (2018) 1388–1419. [CrossRef] [MathSciNet] [Google Scholar]
  24. D.D.A. Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Springer (2020). [CrossRef] [Google Scholar]
  25. S. Rhebergen and G. Wells, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55 (2017) 1982–2003. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Rhebergen and G.N. Wells, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76 (2018) 1484–1501. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Rhebergen and G.N. Wells, Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput. 77 (2018) 1936–1952. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Rhebergen and G.N. Wells, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. [CrossRef] [Google Scholar]
  29. J. Schöberl, C++ 11 implementation of finite elements in NGSolve. Institute for analysis and scientific computing, Vienna University of Technology (2014). [Google Scholar]
  30. P.W. Schroeder and G. Lube, Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75 (2018) 830–858. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you