Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 3091 - 3114
DOI https://doi.org/10.1051/m2an/2021081
Published online 24 December 2021
  1. F. Bonaldi, D.A. Di Pietro, G. Geymonat and F. Krasucki, A hybrid high-order method for Kirchhoff-Love plate bending problems. ESAIM: M2AN 52 (2018) 393–421. [CrossRef] [EDP Sciences] [Google Scholar]
  2. S.C. Brenner and M. Neilan, A C0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49 (2011) 869–892. [Google Scholar]
  3. E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 1525–1546. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Burman, M. Cicuttin, G. Delay and A. Ern, An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43 (2021) A859–A882. [CrossRef] [Google Scholar]
  5. A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics (2017). [CrossRef] [Google Scholar]
  6. A. Cangiani, Z. Dong and E.H. Georgoulis, hp-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements. Math. Comp. 91 (2022) 1–35. [Google Scholar]
  7. K.L. Cascavita, F. Chouly and A. Ern, Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. 40 (2020) 2189–2226. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods. A Primer with Application to Solid Mechanics. SpringerBriefs in Mathematics (2021). [CrossRef] [Google Scholar]
  9. B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput. 82 (2020) 1–15. [Google Scholar]
  11. D.A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Vol. 19. Springer Nature (2020). [CrossRef] [Google Scholar]
  12. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). [Google Scholar]
  13. D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Eng. 283 (2015) 1–21. [CrossRef] [Google Scholar]
  14. D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14 (2014) 461–472. [CrossRef] [Google Scholar]
  15. Z. Dong and A. Ern, Hybrid high-order and weak Galerkin methods for the biharmonic problem. Preprint arXiv:2103.16404 (2021). [Google Scholar]
  16. A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. [EDP Sciences] [Google Scholar]
  17. A. Ern and J.-L. Guermond, Finite Elements II: Galerkin Approximation, Elliptic and Mixed PDEs. Vol. 73 of Texts in Applied Mathematics. Springer Nature, Cham, Switzerland (2021). [Google Scholar]
  18. A. Ern and J.-L. Guermond, Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and H1+r, r > 0, regularity. Found. Comput. Math. (Published online) (2021) hal-01964299. [Google Scholar]
  19. J. Guzmán, D. Leykekhman and M. Neilan, A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49 (2012) 95–125. [CrossRef] [MathSciNet] [Google Scholar]
  20. X. Huang, Y. Shi and W. Wang, A Morley–Wang–Xu element method for a fourth order elliptic singular perturbation problem. J. Sci. Comput. 87 (2021) 1–24. [CrossRef] [Google Scholar]
  21. T. Nilssen, X.C. Tai and R. Winther, A robust nonconforming H2-element. Math. Comp. 70 (2001) 489–505. [Google Scholar]
  22. C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. [CrossRef] [Google Scholar]
  23. A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Wang and X. Meng, A robust finite element method for a 3-D elliptic singular perturbation problem. J. Comput. Math. 25 (2007) 631–644. [MathSciNet] [Google Scholar]
  25. M. Wang, J. Xu and Y. Hu, Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24 (2006) 113–120. [Google Scholar]
  26. L. Wang, Y. Wu and X. Xie, Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems. Num. Meth. Part. Diff. Equ. 29 (2013) 721–737. [CrossRef] [Google Scholar]
  27. W. Wang, X. Huang, K. Tang and R. Zhou, Morley–Wang–Xu element methods with penalty for a fourth order elliptic singular perturbation problem. Adv. Comp. Math. 44 (2018) 1041–1061. [CrossRef] [Google Scholar]
  28. H. Wu and Y. Xiao, An unfitted hp-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37 (2019) 316–339. [CrossRef] [MathSciNet] [Google Scholar]
  29. B. Zhang, J. Zhao and S. Chen, The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comp. Math. 46 (2020) 1–23. [CrossRef] [Google Scholar]
  30. W. Zheng and H. Qi, On Friedrichs-Poincaré-type inequalities. J. Math. Anal. Appl. 304 (2005) 542–551. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you