Open Access
Volume 56, Number 1, January-February 2022
Page(s) 105 - 120
Published online 07 February 2022
  1. P. Albano, On the stability of the cut locus. Nonlinear Anal. Theory Methods App. 136 (2016) 51–61. [CrossRef] [Google Scholar]
  2. E.D. Andersen and K.D. Andersen, The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Performance Optimization Springer (2000) 197–232. [CrossRef] [Google Scholar]
  3. D. Attali and A. Montanvert, Modeling noise for a better simplification of skeletons. In: Proceedings of 3rd IEEE International Conference on Image Processing. Vol. 3. IEEE (1996) 13–16. [Google Scholar]
  4. B. Bonnard, O. Cots and L. Jassionnesse, Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces. In: Geometric Control Theory and Sub-Riemannian Geometry. Springer (2014) 53–72. [CrossRef] [Google Scholar]
  5. M.A. Buchner, Simplicial structure of the real analytic cut locus. Proc. Am. Math. Soc. 64 (1977) 118–121. [CrossRef] [Google Scholar]
  6. I. Chavel, Riemannian Geometry: A Modern Introduction. Vol 98. Cambridge University Press (2006). [CrossRef] [Google Scholar]
  7. F. Chazal and A. Lieutier, The “λ-medial axis”. Graphical Models 67 (2005) 304–331. [CrossRef] [Google Scholar]
  8. A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009) 805–827. [Google Scholar]
  9. T.K. Dey and K. Li, Cut locus and topology from surface point data. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry. ACM (2009) 125–134. [Google Scholar]
  10. I. Dunning, J. Huchette and M. Lubin, Jump: a modeling language for mathematical optimization. SIAM Rev. 59 (2017) 295–320. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. [Google Scholar]
  12. F. Générau, E. Oudet and B. Velichkov, Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. Preprint arXiv:2006.07222 [math] (2020). [Google Scholar]
  13. J.-I. Itoh and R. Sinclair, Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13 (2004) 309–325. [CrossRef] [Google Scholar]
  14. M.K. Misztal, J.A. Bærentzen, F. Anton and S. Markvorsen, Cut locus construction using deformable simplicial complexes. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering. IEEE (2011) 134–141. [Google Scholar]
  15. S.B. Myers, Connections between differential geometry and topology II. Closed surfaces. Duke Math. J. 2 (1936) 95–102. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Petrunin, Semiconcave functions in Alexandrov’s geometry. Surv. Differ. Geom. 11 (2006) 137–202. [CrossRef] [Google Scholar]
  17. Y. Renard and J. Pommier, , Getfem++. An open source generic C++ library for finite element methods ( (2006). [Google Scholar]
  18. R. Sinclair and M. Tanaka, Loki: software for computing cut loci. Exp. Math. 11 (2002) 1–25. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you