Open Access
Issue
ESAIM: M2AN
Volume 56, Number 1, January-February 2022
Page(s) 349 - 383
DOI https://doi.org/10.1051/m2an/2021084
Published online 14 February 2022
  1. G. Akrivis, Implicit-explicit multistep methods for nonlinear parabolic equations. Math. Comp. 82 (2013) 45–68. [Google Scholar]
  2. G. Akrivis, Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations. IMA J. Numer. Anal. 38 (2018) 1768–1796. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477. [CrossRef] [MathSciNet] [Google Scholar]
  4. U.M. Ascher, S.J. Ruuth and B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. [CrossRef] [MathSciNet] [Google Scholar]
  5. U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. Special issue on time integration (Amsterdam, 1996). [Google Scholar]
  6. G.A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339–375. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119–1140. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman and A. Ern, Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations. ESAIM: M2AN 46 (2012) 681–707. [CrossRef] [EDP Sciences] [Google Scholar]
  9. E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Eng. 198 (2009) 2508.2519. [CrossRef] [Google Scholar]
  10. E. Burman, A. Ern and M.A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019–2042. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Burman, A. Ern and M.A. Fernández, Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: M2AN 51 (2017) 487–507. [CrossRef] [EDP Sciences] [Google Scholar]
  12. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411–435. [Google Scholar]
  13. M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. [Google Scholar]
  14. C. Dawson, Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315–1332. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Douglas Jr and T. Dupont, Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970) 575–626. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.L. Ghrist, B. Fornberg and J.A. Reeger, Stability ordinates of Adams predictor-corrector methods. BIT 55 (2015) 733–750. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Hundsdorfer, Trapezoidal and midpoint splittings for initial-boundary value problems. Math. Comp. 67 (1998) 1047–1062. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Hundsdorfer, Partially implicit BDF2 blends for convection dominated flows. SIAM J. Numer. Anal. 38 (2001) 1763–1783. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Levy and E. Tadmor, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40–73. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Mazzia, L. Bergamaschi, C.N. Dawson and M. Putti, Godunov mixed methods on triangular grids for advection-dispersion equations. Comput. Geosci. 6 (2002) 123–139. [CrossRef] [MathSciNet] [Google Scholar]
  21. R.C. Moura, A. Cassinelli, A.F.C. da Silva, E. Burman and S.J. Sherwin, Gradient jump penalty stabilisation of spectral/hp element discretisation for under-resolved turbulence simulations. Comput. Methods Appl. Mech. Eng. 388 (2022) 114200. [CrossRef] [Google Scholar]
  22. A.K. Pani, V. Thomée and A.S. Vasudeva Murthy, A first-order explicit-implicit splitting method for a convection-diffusion problem. Comput. Methods Appl. Math. 20 (2020) 769–782. [CrossRef] [MathSciNet] [Google Scholar]
  23. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin (2006). [Google Scholar]
  24. J.M. Varah, Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17 (1980) 300–309. [CrossRef] [MathSciNet] [Google Scholar]
  25. H. Wang, Y. Liu, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comp. 88 (2019) 91–121. [Google Scholar]
  26. H. Wang, Q. Zhang and C.-W. Shu, Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81 (2019) 2080–2114. [CrossRef] [MathSciNet] [Google Scholar]
  27. Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]
  28. Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48 (2010) 1038–1063. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you