Open Access
Volume 56, Number 2, March-April 2022
Page(s) 529 - 564
Published online 28 February 2022
  1. H. Alrachid and T. Lelièvre, Long-time convergence of an adaptive biasing force method: variance reduction by Helmholtz projection. J. Comput. Math. 1 (2015) 55–82. [Google Scholar]
  2. L. Ambrosio, A. Carlotto and A. Massaccesi, Lectures on Elliptic Partial Differential Equations (2018). [CrossRef] [Google Scholar]
  3. D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion operators. Vol. 348 of Grundlehren der mathematischen Wissenschaften. Springer (2014). [CrossRef] [Google Scholar]
  4. V.I. Bogachev, N.V. Krylov, M. Röckner and S.V. Shaposhnikov, Fokker–Planck–Kolmogorov equations. American Mathematical Society (2015). [Google Scholar]
  5. H. Brézis, Analyse fonctionnelle : théorie et applications. Masson (1987). [Google Scholar]
  6. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K. Schütt and K.-R. Müller, Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3 (2017) 05. [CrossRef] [Google Scholar]
  7. E. Darve and A. Pohorille, Calculating free energies using average force. J. Chem. Phys. 115 (2001) 9169–9183. [CrossRef] [Google Scholar]
  8. E.B. Dynkin, Markov Processes Volume I. Springer Verlag (1965). [CrossRef] [Google Scholar]
  9. E.B. Dynkin, Markov Processes, Volume II. Springer Verlag (1965). [CrossRef] [Google Scholar]
  10. L.C. Evans, Partial Differential Equations. American Mathematical Society (2010). [Google Scholar]
  11. H. Fu, X. Shao, C. Chipot and W. Cai, Extended adaptive biasing force algorithm an on-the-fly implementation for accurate free-energy calculations. J. Chem. Theory Comput. 12 (2016) 3506–3513. [CrossRef] [PubMed] [Google Scholar]
  12. P. Gkeka, G. Stoltz, A. Barati Farimani, Z. Belkacemi, M. Ceriotti, J. Chodera, A.R. Dinner, A. Ferguson, J.-B. Maillet, H. Minoux, C. Peter, F. Pietrucci, A. Silveira, A. Tkatchenko, Z. Trstanova, R. Wiewiora and T. Lelièvre, Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems. Preprint arXiv:2004.06950 (2020) [Google Scholar]
  13. J. Hénin and C. Chipot, Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121 (2004) 2904–2914. [CrossRef] [PubMed] [Google Scholar]
  14. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Jourdain, T. Lelièvre and R. Roux, Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process. ESAIM: M2AN 44 (2010) 831–865. [CrossRef] [EDP Sciences] [Google Scholar]
  16. X. Kong and C.L. Brooks, λ-dynamics: A new approach to free energy calculations. J. Chem. Phys. 105 (1996) 2414–2423. [CrossRef] [Google Scholar]
  17. N. Krylov, On diffusion processes with drift in Ld. Probab. Theory Relat. Fields (2020). [Google Scholar]
  18. T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016). [Google Scholar]
  19. T. Lelièvre, M. Rousset and G. Stoltz, Long-time convergence of an Adaptive Biasing Force method. Nonlinearity 21 (2008). [Google Scholar]
  20. T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations. Imperial College Press (2010). [CrossRef] [Google Scholar]
  21. G. Menz and A. Schlichting, Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42 (2014) 1809–1884. [CrossRef] [MathSciNet] [Google Scholar]
  22. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Springer Verlag, London (1993). [CrossRef] [Google Scholar]
  23. P. Monmarché, Generalized Γ calculus and application to interacting particles on a graph. Potential Anal. 50 (2019) 439–466. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Niklasson, C. Tymczak and M. Challacombe, Time-reversible born-oppenheimer molecular dynamics. Phys. Rev. Lett. 97 (2006) 10. [CrossRef] [Google Scholar]
  25. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Pulay and G. Fogarasi, Fock matrix dynamics. Chem. Phys. Lett. 386 (2004) 03. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you