Open Access
Volume 56, Number 2, March-April 2022
Page(s) 727 - 742
Published online 13 April 2022
  1. P. Angot, Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions. ESAIM: M2AN 52 (2018) 1875–1911. [CrossRef] [EDP Sciences] [Google Scholar]
  2. P. Angot, B. Goyeau and J.A. Ochoa-Tapia, Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: jump conditions. Phys. Rev. E 95 (2017) 063302. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high-energy geothermal simulations. Comput. Geosci. 23 (2019) 443–470. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. [Google Scholar]
  5. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  6. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Fr. Autom. Inf. Recherche Opér. sér. Rouge 8 (1974) 129–151. [Google Scholar]
  7. Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8 (2010) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Methods Appl. Mech. Eng. 292 (2015) 195–220. [CrossRef] [Google Scholar]
  9. R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer (1990). [Google Scholar]
  10. C. Dawson, A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow. Comput. Geosci. 12 (2008) 451–472. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2009) 315–426. [Google Scholar]
  12. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Num. Math. 43 (2002) 57–74. [CrossRef] [Google Scholar]
  13. E. Eggenweiler and I. Rybak, Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech. 892 (2020) A10. [CrossRef] [Google Scholar]
  14. E. Eggenweiler and I. Rybak, Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul. 19 (2021) 731–757. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beavers–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Goyeau, D. Lhuillier, D. Gobin and M. Velarde, Momentum transport at a fluid-porous interface. Int. J. Heat Mass Trans. 46 (2003) 4071–4081. [CrossRef] [Google Scholar]
  17. N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Development of a predictive mathematical model for coupled Stokes/Darcy flows in cross-flow membrane filtration. Chem. Eng. J. 149 (2009) 132–142. [CrossRef] [Google Scholar]
  18. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  19. U. Hornung, Homogenization and Porous Media. Springer (1997). [CrossRef] [Google Scholar]
  20. Y. Hou and Y. Qin, On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition. Comput. Math. Appl. 77 (2019) 50–65. [CrossRef] [MathSciNet] [Google Scholar]
  21. W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60 (2000) 1111–1127. [CrossRef] [MathSciNet] [Google Scholar]
  22. W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78 (2009) 489–508. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Jarauta, V. Zingan, P. Minev and M. Secanell, A compressible fluid flow model coupling channel and porous media flows and its application to fuel cell materials. Transp. Porous Media 134 (2020) 351–386. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. [CrossRef] [MathSciNet] [Google Scholar]
  25. U. Lācis and S. Bagheri, A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812 (2017) 866–889. [CrossRef] [MathSciNet] [Google Scholar]
  26. U. Lācis, Y. Sudhakar, S. Pasche and S. Bagheri, Transfer of mass and momentum at rough and porous surfaces. J. Fluid Mech. 884 (2020) A21. [CrossRef] [Google Scholar]
  27. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. [Google Scholar]
  28. M. Le Bars and M. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550 (2006) 149–173. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Lions and E. Magenes, Non-Homogeneous Boundary Problemes and Applications. Springer (1972). [Google Scholar]
  30. R.M. Maxwell, M. Putti, S. Meyerhoff, J.-O. Delfs, I.M. Ferguson, V. Ivanov, J. Kim, O. Kolditz, S.J. Kollet, M. Kumar, S. Lopez, J. Niu, C. Paniconi, Y.-J. Park, M.S. Phanikumar, C. Shen, E.A. Sudicky and M. Sulis, Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50 (2014) 1531–1549. [CrossRef] [Google Scholar]
  31. K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak and B. Wohlmuth, A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47 (2011) W10522. [CrossRef] [Google Scholar]
  32. A.I. Nazarov and S.I. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces. Math. Meth. Appl. Sci. 38 (2015) 3195–3207. [CrossRef] [Google Scholar]
  33. D.A. Nield, The Beavers-Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Media 78 (2009) 537–540. [CrossRef] [Google Scholar]
  34. A.J. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: theoretical development. Int. J. Heat Mass Trans. 38 (1995) 2635–2646. [CrossRef] [Google Scholar]
  35. B. Reuter, A. Rupp, V. Aizinger and P. Knabner, Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Comput. Math. Appl. 77 (2019) 2291–2309. [CrossRef] [MathSciNet] [Google Scholar]
  36. I. Rybak, J. Magiera, R. Helmig and C. Rohde, Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19 (2015) 299–309. [Google Scholar]
  37. I. Rybak, C. Schwarzmeier, E. Eggenweiler and U. Rüde, Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci. 25 (2021) 621–635. [CrossRef] [MathSciNet] [Google Scholar]
  38. P.G. Saffman, On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50 (1971) 93–101. [CrossRef] [Google Scholar]
  39. P. Sochala, A. Ern and S. Piperno, Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Eng. 198 (2009) 2122–2136. [CrossRef] [Google Scholar]
  40. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana (2007). [Google Scholar]
  41. G.A. Zampogna and A. Bottaro, Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech. 792 (2016) 5–35. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you