Open Access
Issue |
ESAIM: M2AN
Volume 56, Number 3, May-June 2022
|
|
---|---|---|
Page(s) | 743 - 766 | |
DOI | https://doi.org/10.1051/m2an/2022018 | |
Published online | 25 April 2022 |
- G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613–635. [Google Scholar]
- G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131 (2015) 713–735. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bader and P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41 (1983) 373–398. [CrossRef] [Google Scholar]
- A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences. Classics in Applied Mathematics. Society for Industrial Mathematics (1987). [Google Scholar]
- C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952. [Google Scholar]
- C. Besse, G. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. SIAM J. Numer. Anal. 55 (2017) 1387–1411. [CrossRef] [MathSciNet] [Google Scholar]
- C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy-preserving methods for nonlinear Schrödinger equations. IMA J. Numer. Anal. 41 (2020) 618–653. [Google Scholar]
- J. Butcher, Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11 (1993) 347–363. [CrossRef] [MathSciNet] [Google Scholar]
- J. Butcher, General linear methods. Selected Topics in Numerical Methods. Comput. Math. App. 31 (1996) 105–112. [Google Scholar]
- J. Butcher and G. Wanner, Runge-Kutta methods: some historical notes. Special Issue Celebrating the Centenary of Runge-Kutta Methods. Appl. Numer. Math. 22 (1996) 113–151. [CrossRef] [MathSciNet] [Google Scholar]
- M. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math. 37 (2001) 535–549. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Cheng and J. Shen, Multiple Scalar Auxiliary Variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40 (2018) A3982–A4006. [CrossRef] [Google Scholar]
- J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambridge Philos. Soc. 43 (1947) 50–67. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dahlquist, A special stability problem for linear multistep methods. BIT Numer. Math. 3 (1963) 27–43. [CrossRef] [Google Scholar]
- M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277–288. [Google Scholar]
- G. Dujardin, Exponential Runge-Kutta methods for the Schrödinger equation. Appl. Numer. Math. 59 (2009) 1839–1857. [CrossRef] [MathSciNet] [Google Scholar]
- R. Frank, J. Schneid and C.W. Ueberhuber, The concept of B-convergence. SIAM J. Numer. Anal. 18 (1981) 753–780. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Vol. 14. Springer Verlag Series in Comput. Math. Springer Berlin Heidelberg (1996). [Google Scholar]
- E. Hairer, S. Norsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Vol. 8. Springer (1993). [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition. Springer Series in Computational Mathematics. Vol. 31. Springer, Berlin Heidelberg (2002). [Google Scholar]
- K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Jpn. Acad. 49 (1973) 503–505. [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems. Tenth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-10). Appl. Numer. Math. 53 (2005) 323–339. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
- P. Kaps and G. Wanner, A study of Rosenbrock-type methods of high order. Numer. Math. 38 (1981) 279–298. [Google Scholar]
- B. Kovàcs and C. Lubich, Linearly implicit full discretization of surface evolution. Numer. Math. 140 (2018) 121–152. [CrossRef] [MathSciNet] [Google Scholar]
- W. Kutta, Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math. Phys. 46 (1901) 435–453. [Google Scholar]
- C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141–2153. [CrossRef] [MathSciNet] [Google Scholar]
- C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555–583. [CrossRef] [MathSciNet] [Google Scholar]
- R.I. McLachlan, Families of high-order composition methods. Numer. Algorithms 31 (2002) 233–246. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations. Comput. J. 5 (1963) 329–330. [Google Scholar]
- C. Runge, Ueber die numerische auflösung von differentialgleichungen. Math. Annal. 46 (1895) 167–178. [CrossRef] [Google Scholar]
- Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition. Society for Industrial and Applied Mathematics (2003). [Google Scholar]
- J. Shen and J. Xu, Convergence and error analysis for the Scalar Auxiliary Variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56 (2018) 2895–2912. [CrossRef] [MathSciNet] [Google Scholar]
- K. Strehmel and R. Weiner, B-convergence results for linearly implicit one step methods. BIT Numer. Math. 27 (1987) 264–281. [CrossRef] [Google Scholar]
- K. Strehmel, R. Weiner and I. Dannehl, A study of B-convergence of linearly implicit Runge-Kutta methods. Computing 40 (1988) 241–253. [CrossRef] [MathSciNet] [Google Scholar]
- M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Special Issue Celebrating the Centenary of Runge–Kutta Methods. Phys. Lett. A 146 (1990) 319–323. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wensch, K. Strehmel and R. Weiner, A class of linearly-implicit Runge-Kutta methods for multibody systems. Appl. Numer. Math. 22 (1996) 381–398. [CrossRef] [MathSciNet] [Google Scholar]
- H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.