Open Access
Issue
ESAIM: M2AN
Volume 56, Number 3, May-June 2022
Page(s) 1053 - 1080
DOI https://doi.org/10.1051/m2an/2022031
Published online 13 May 2022
  1. A.I. Ávila, S. Kopecz and A. Meister, A comprehensive theory on generalized BBKS schemes. Appl. Numer. Math. 157 (2020) 19–37. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.I. Ávila, G.J. González, S. Kopecz and A. Meister, Extension of modified Patankar-Runge-Kutta schemes to nonautonomous production-destruction systems based on Oliver’s approach. J. Comput. Appl. Math. 389 (2021) 113350. [CrossRef] [Google Scholar]
  3. J. Benz, A. Meister and P.A. Zardo, A positive and conservative second order finite volume scheme applied to a phosphor cycle in canals with sediment. In: PAMM: Proceedings in Applied Mathematics and Mechanics. Vol 7. Wiley Online Library (2007) 2040045–2040046. [CrossRef] [Google Scholar]
  4. J. Benz, A. Meister and P.A. Zardo, A conservative, positivity preserving scheme for advection-diffusion-reaction equations in biochemical applications. In: Hyperbolic Problems: Theory, Numerics and Applications. Vol. 67.2 of Proceedings of Symposia in Applied Mathematics, edited by E. Tadmor, J.-G. Liu and A. Tzavaras. American Mathematical Society, Providence, Rhode Island (2009) 399–408. [CrossRef] [Google Scholar]
  5. S. Blanes, A. Iserles and S. Macnamara, Positivity-preserving methods for population models. Preprint arXiv:2102.08242 (2021). [Google Scholar]
  6. L. Bonaventura and A. Della Rocca, Unconditionally strong stability preserving extensions of the TR-BDF2 method. J. Sci. Comput. 70 (2017) 859–895. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Burchard, E. Deleersnijder and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47 (2003) 1–30. [Google Scholar]
  8. H. Burchard, E. Deleersnijder and A. Meister, Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dyn. 55 (2005) 326–337. [NASA ADS] [CrossRef] [Google Scholar]
  9. H. Burchard, K. Bolding, W. Kühn, A. Meister, T. Neumann and L. Umlauf, Description of a flexible and extendable physical–biogeochemical model system for the water column. J. Marine Syst. 61 (2006) 180–211. [CrossRef] [Google Scholar]
  10. J. Carr, Applications of Centre Manifold Theory. Vol. 35 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin (1981). [CrossRef] [Google Scholar]
  11. M. Ciallella, L. Micalizzi, P. Öffner and D. Torlo, An arbitrary high order and positivity preserving method for the shallow water equations. Preprint arXiv:2110.13509 (2021). [Google Scholar]
  12. P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Translated from the 1994 German original by Werner C. Rheinboldt. Vol. 42 of Texts in Applied Mathematics. Springer-Verlag, New York (2002) [Google Scholar]
  13. L. Formaggia and A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49 (2011) 1267–1288. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Gressel, Toward realistic simulations of magneto-thermal winds from weakly-ionized protoplanetary disks. J. Phys. Conf. Ser. 837 (2017) 012008. [CrossRef] [Google Scholar]
  15. I. Hense and A. Beckmann, The representation of cyanobacteria life cycle processes in aquatic ecosystem models. Ecol. Modell. 221 (2010) 2330–2338. [CrossRef] [Google Scholar]
  16. I. Hense and H. Burchard, Modelling cyanobacteria in shallow coastal seas. Ecol. Modell. 221 (2010) 238–244. [CrossRef] [Google Scholar]
  17. J. Huang and C.-W. Shu, Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78 (2019) 1811–1839. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Huang, W. Zhao and C.-W. Shu, A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79 (2019) 1015–1056. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Iooss, Bifurcation of Maps and Applications. Elsevier (1979). [Google Scholar]
  20. T. Izgin, S. Kopecz and A. Meister, Recent developments in the field of modified Patankar–Runge–Kutta–methods. In: PAMM: Proceedings in Applied Mathematics and Mechanics. Wiley Online Library (2021). [Google Scholar]
  21. J.S. Klar and J.P. Mücket, A detailed view of filaments and sheets in the warm-hot intergalactic medium. Astron. Astrophys. 522 (2010) A114. [CrossRef] [EDP Sciences] [Google Scholar]
  22. S. Kopecz and A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123 (2018) 159–179. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. BIT Numer. Math. 58 (2018) 691–728. [CrossRef] [Google Scholar]
  24. S. Kopecz and A. Meister, On the existence of three-stage third-order modified Patankar–Runge–Kutta schemes. Numer. Algorithms 81 (2019) 1473–1484. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications. Vol 19. Springer-Verlag (1976). [CrossRef] [Google Scholar]
  26. A. Martiradonna, G. Colonna and F. Diele, GeCo: geometric conservative nonstandard schemes for biochemical systems. Appl. Numer. Math. 155 (2020) 38–57. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Meister and J. Benz, Phosphorus Cycles in Lakes and Rivers: Modeling, Analysis, and Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 713–738. [Google Scholar]
  28. K.S. Miller, On the inverse of the sum of matrices. Math. Mag. 54 (1981) 67–72. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. NüSSlein, H. Ranocha and D.I. Ketcheson, Positivity-preserving adaptive Runge-Kutta methods. Commun. Appl. Math. Compu. Sci. 16 (2021) 155–179. [CrossRef] [Google Scholar]
  30. P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Ortleb and W. Hundsdorfer, Patankar-type Runge-Kutta schemes for linear PDEs. AIP Conf. Proc. 1863 (2017) 320008. [CrossRef] [Google Scholar]
  32. G. Osipenko, Center Manifolds, chapter 5. Springer New York, New York, NY (2009) 936–951. [Google Scholar]
  33. B. Schippmann and H. Burchard, Rosenbrock methods in biogeochemical modelling – a comparison to Runge-Kutta methods and modified Patankar schemes. Ocean Model. 37 (2011) 112–121. [CrossRef] [Google Scholar]
  34. K. Semeniuk and A. Dastoor, Development of a global ocean mercury model with a methylation cycle: outstanding issues. Global Biogeochem. Cycles 31 (2017) 400–433. [Google Scholar]
  35. A. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Vol 2. Cambridge University Press (1998). [Google Scholar]
  36. A. Warns, I. Hense and A. Kremp, Modelling the life cycle of dinoflagellates: a case study with Biecheleria baltica. J. Plankton. Res. 35 (2013) 379–392. [Google Scholar]
  37. S. Wei and R.J. Spiteri, Qualitative property preservation of high-order operator splitting for the SIR model. Appl. Numer. Math. 172 (2022) 332–350. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you