Open Access
Issue
ESAIM: M2AN
Volume 56, Number 4, July-August 2022
Page(s) 1361 - 1400
DOI https://doi.org/10.1051/m2an/2022044
Published online 27 June 2022
  1. E. Allgower and K. Georg, Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics (2003). [Google Scholar]
  2. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993). [Google Scholar]
  3. E. Bader, M. Kärcher, M.A. Grepl and K. Veroy-Grepl, A certified reduced basis approach for parametrized linear-quadratic optimal control problems with control constraints. IFAC-PapersOnLine 48 (2015) 719–720. [CrossRef] [Google Scholar]
  4. E. Bader, M. Kärcher, M.A. Grepl and K. Veroy, Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints. SIAM J. Sci. Comput. 38 (2016) A3921–A3946. [CrossRef] [Google Scholar]
  5. F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102 (2015) 1136–1161. [Google Scholar]
  6. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An Empirical Interpolation Method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339 (2004) 667–672. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Bauer and E.L. Reiss, Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math. 13 (1965) 603–626. [CrossRef] [Google Scholar]
  8. M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices. Numer. Math. 103 (2006) 173–196. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Benzi and A.J. Wathen, Some Preconditioning Techniques for Saddle Point Problems. Springer Berlin Heidelberg, Berlin, Heidelberg (2008) 195–211. [Google Scholar]
  10. M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.S. Berger, On Von Kármán’s equations and the buckling of a thin elastic plate, I the clamped plate. Commun. Pure App. Math. 20 (1967) 687–719. [CrossRef] [Google Scholar]
  12. P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods. Vol. 166. Springer-Verlag, New York (2009). [Google Scholar]
  13. J. Bramble, J. Pasciak and A. Vassilev, Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comput. 69 (2000) 667–689. [Google Scholar]
  14. J. Burkardt, M. Gunzburger and H. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Eng. 196 (2006) 337–355. [CrossRef] [Google Scholar]
  15. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. Handb. Numer. Anal. 5 (1997) 487–637. [Google Scholar]
  16. D. Chapelle, A. Gariah, P. Moireau and J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: Analysis, assessments and applications to parameter estimation. ESAIM: M2AN 47 (2013) 1821–1843. [CrossRef] [EDP Sciences] [Google Scholar]
  17. E. Charalampidis, P. Kevrekidis and P. Farrell, Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation. Commun. Nonlinear Sci. Numer. Simul. 54 (2018) 482–499. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (2013). [Google Scholar]
  19. L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 997–1019. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Fursikov, M. Gunzburger and L. Hou, Boundary value problems and optimal boundary control for the Navier-Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894. [CrossRef] [MathSciNet] [Google Scholar]
  21. A.L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34 (2012) A2812–A2836. [CrossRef] [Google Scholar]
  22. M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (2000) 249–272. [CrossRef] [MathSciNet] [Google Scholar]
  23. M.D. Gunzburger, Perspectives in Flow Control and Optimization. Vol. 5. SIAM, Philadelphia (2003). [Google Scholar]
  24. M. Hess, A. Alla, A. Quaini, G. Rozza and M. Gunzburger, A localized reduced-order modeling approach for PDEs with bifurcating solutions. Comput. Methods Appl. Mech. Eng. 351 (2019) 379–403. [CrossRef] [Google Scholar]
  25. M. Hess, A. Quaini and G. Rozza, Reduced basis model order reduction for Navier-Stokes equations in domains with walls of varying curvature. Int. J. Comput. Fluid Dyn. 34 (2020) 119–126. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Milano (2015). [Google Scholar]
  27. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Vol. 23. Springer Science & Business Media, Antwerp (2008). [Google Scholar]
  28. M. Kärcher and M.A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: COCV 20 (2014) 416–441. [CrossRef] [EDP Sciences] [Google Scholar]
  29. M. Kärcher, Z. Tokoutsi, M.A. Grepl and K. Veroy, Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75 (2018) 276–307. [Google Scholar]
  30. P. Kevrekidis, D. Frantzeskakis and R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2015). [CrossRef] [Google Scholar]
  31. M. Khamlich, F. Pichi and G. Rozza, Model order reduction for bifurcating phenomena in fluid-structure interaction problems. Preprint arXiv:2110.06297 (2021). [Google Scholar]
  32. H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs. Applied Mathematical Sciences. Springer, New York (2006). [Google Scholar]
  33. Y. Kuznetsov, Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  34. G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich, Trends in PDE Constrained Optimization. Springer, New York (2014). [Google Scholar]
  35. J.L. Lions, Optimal Control of System Governed by Partial Differential Equations. Vol. 170. Springer-Verlagr, Berlin and Heidelberg (1971). [CrossRef] [Google Scholar]
  36. A. Logg, K. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer-Verlag, Berlin (2012). [CrossRef] [Google Scholar]
  37. S. Middelkamp, P. Kevrekidis, D. Frantzeskakis, R. Carretero-González and P. Schmelcher, Emergence and stability of vortex clusters in Bose-Einstein condensates: a bifurcation approach near the linear limit. Phys. D: Nonlinear Phenom. 240 (2011) 1449–1459. [CrossRef] [Google Scholar]
  38. H.K. Moffatt, Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1964) 1–18. [CrossRef] [Google Scholar]
  39. F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. [CrossRef] [Google Scholar]
  40. F. Negri, A. Manzoni and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Comput. Math. App. 69 (2015) 319–336. [Google Scholar]
  41. F. Pichi and G. Rozza, Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. J. Sci. Comput. 81 (2019) 112–135. [CrossRef] [MathSciNet] [Google Scholar]
  42. F. Pichi, A. Quaini and G. Rozza, A reduced order modeling technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. SIAM J. Sci. Comput. 42 (2020) B1115–B1135. [CrossRef] [Google Scholar]
  43. F. Pichi, F. Ballarin, G. Rozza and J.S. Hesthaven, An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. Preprint arXiv:2109.10765 (2021). [Google Scholar]
  44. M. Pintore, F. Pichi, M. Hess, G. Rozza and C. Canuto, Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Adv. Comput. Math. 47 (2021) 1–39. [CrossRef] [Google Scholar]
  45. G. Pitton and G. Rozza, On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics. J. Sci. Comput. 73 (2017) 157–177. [CrossRef] [MathSciNet] [Google Scholar]
  46. G. Pitton, A. Quaini and G. Rozza, Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiology. J. Comput. Phys. 344 (2017) 534–557. [CrossRef] [MathSciNet] [Google Scholar]
  47. A. Quaini, R. Glowinski and S. Canic, Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel. Int. J. Comput. Fluid Dyn. 30 (2016) 7–19. [CrossRef] [MathSciNet] [Google Scholar]
  48. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23. Springer Science & Business Media, Berlin and Heidelberg (2008). [Google Scholar]
  49. A. Quarteroni, G. Rozza and A. Quaini, Reduced basis methods for optimal control of advection-diffusion problems. In: Advances in Numerical Mathematics. CMCS-CONF-2006-003. RAS and University of Houston (2007) 193–216. [Google Scholar]
  50. RBniCS – reduced order modelling in FEniCS. https://www.rbnicsproject.org/ (2015). [Google Scholar]
  51. G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196 (2007) 1244–1260. [CrossRef] [Google Scholar]
  52. R. Seydel, Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics. Springer, New York (2009). [Google Scholar]
  53. M. Stoll and A. Wathen, All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232 (2013) 498–515. [MathSciNet] [Google Scholar]
  54. M. Strazzullo, F. Ballarin, R. Mosetti and G. Rozza, Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. SIAM J. Sci. Comput. 40 (2018) B1055–B1079. [CrossRef] [Google Scholar]
  55. M. Strazzullo, F. Ballarin and G. Rozza, POD-Galerkin model order reduction for parametrized nonlinear time dependent optimal flow control: an application to Shallow Water Equations. J. Numer. Math. 30 (2021) 63–84. [Google Scholar]
  56. M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized nonlinear and time dependent optimal flow control problems: towards applications in biomedical and environmental sciences. In: Numerical Mathematics and Advanced Applications ENUMATH 2019 (2021). [Google Scholar]
  57. D.J. Tritton, Physical Fluid Dynamics. Springer Science & Business Media (2012). [Google Scholar]
  58. F. Tröltzsch, Optimal Control of Partial Differential Equations. Graduate Studies in mathematics. Vol. 112. American Mathimatical Society, Verlag, Wiesbad (2010). [Google Scholar]
  59. T. Von Kármán, Festigkeitsprobleme im Maschinenbau. Encyclopädie der Mathematischen Wissenschaften. Vol. 4 (1910). [Google Scholar]
  60. Z. Zainib, F. Ballarin, S. Fremes, P. Triverio, L. Jiménez-Juan and G. Rozza, Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. Int. J. Numer. Methods Biomed. Eng. 37 (2021) e3367. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you