Open Access
Volume 56, Number 4, July-August 2022
Page(s) 1451 - 1481
Published online 13 July 2022
  1. A. Abdulle, E. Weinan, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  3. G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinburgh Sect. A Math. 126 (1996) 297–342. [CrossRef] [Google Scholar]
  4. L. Baffico, C. Grandmont, Y. Maday and A. Osses, Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7 (2008) 432–465. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.E. Bank, A.H. Sherman and A. Weiser, Some refinement algorithms and data structures for regular local mesh refinement. Sci. Comput. App. Math. Comput. Phys. Sci. 1 (1983) 3–17. [Google Scholar]
  6. J. Bey, Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85 (2000) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180 (1994) 9. [CrossRef] [Google Scholar]
  8. C. Carstensen, Clément interpolation and its role in adaptive finite element error control. In: Partial Differential Equations and Functional Analysis. Springer (2006) 27–43. [CrossRef] [Google Scholar]
  9. P. Cazeaux, C. Grandmont and Y. Maday, Homogenization of a model for the propagation of sound in the lungs. Multiscale Model. Simul. 13 (2015) 43–71. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Cioranescu, A. Damlamian and J. Orlik, Homogenization via unfolding in periodic elasticity with contact on closed and open cracks. Asymptotic Anal. 82 (2013) 201–232. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Clément, Approximation by finite element functions using local regularization. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9 (1975) 77–84. [Google Scholar]
  12. P. Donato and S. Monsurro, Homogenization of two heat conductors with an interfacial contact resistance. Anal. App. 2 (2004) 247–273. [CrossRef] [Google Scholar]
  13. Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Vol. 4. Springer Science & Business Media (2009). [Google Scholar]
  14. A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. [EDP Sciences] [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). [Google Scholar]
  16. X. Gao and K. Wang, Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345 (2014) 1038–1041. [Google Scholar]
  17. D.S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. Phys. Rev. E 73 (2006) 021103. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. I. Gruais and D. Poliševski, Heat transfer models for two-component media with interfacial jump. Applicable Anal. 96 (2017) 247–260. [CrossRef] [MathSciNet] [Google Scholar]
  19. W. Hackbusch and S.A. Sauter, Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numer. Math. 75 (1997) 447–472. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Heida, Stochastic homogenization of heat transfer in polycrystals with nonlinear contact conductivities. Applicable Anal. 91 (2012) 1243–1264. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Heida, R. Kornhuber and J. Podlesny, Fractal homogenization of multiscale interface problems. Multiscale Model. Simul. 18 (2020) 294–314. [CrossRef] [MathSciNet] [Google Scholar]
  22. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [Google Scholar]
  23. T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J.B. Quincy, The variational multiscale method a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. [CrossRef] [Google Scholar]
  24. H.K. Hummel, Homogenization of Periodic and Random Multidimensional Microstructures. Ph.D. thesis, Technische Universität Bergakademie Freiberg (1999). [Google Scholar]
  25. V.V. Jikov, S.M. Kozlov and O.A. Olenik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  26. R. Kornhuber and H. Yserentant, Multilevel methods for elliptic problems on domains not resolved by the coarse grid. Contemp. Math. 180 (1994) 49–49. [CrossRef] [Google Scholar]
  27. R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036. [Google Scholar]
  28. R. Kornhuber, D. Peterseim and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87 (2018) 2765–2774. [Google Scholar]
  29. M.R. Lancia, A transmission problem with a fractal interface. Zeitschrift für Analysis und ihre Anwendungen 21 (2002) 113–133. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
  31. U. Mosco and M.A. Vivaldi, Layered fractal fibers and potentials. Journal de Mathématiques Pures et Appliquées 103 (2015) 1198–1227. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Nagahama and K. Yoshii, Scaling laws of fragmentation. In: Fractals and Dynamic Systems in Geoscience. Springer (1994) 25–36. [CrossRef] [Google Scholar]
  33. O. Oncken, D. Boutelier, G. Dresen and K. Schemmann, Strain accumulation controls failure of a plate boundary zone: linking deformation of the central andes and lithosphere mechanics. Geochem. Geophys. Geosyst. 13 (2012) Q12007. [CrossRef] [Google Scholar]
  34. P. Oswald, On a BPX-preconditioner for P1 elements. Computing 51 (1993) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
  35. D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Springer (2016) 343–369. [CrossRef] [Google Scholar]
  36. E. Pipping, R. Kornhuber, M. Rosenau and O. Oncken, On the efficient and reliable numerical solution of rate-and-state friction problems. Geophys. J. Int. 204 (2016) 1858–1866. [CrossRef] [Google Scholar]
  37. J. Podlesny, Multiscale modelling and simulation of deformation accumulation in fault networks. Ph.D. thesis, Freie Universität Berlin (2022) [Google Scholar]
  38. T. Preusser, M. Rumpf, S. Sauter and L.O. Schwen, 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. SIAM J. Sci. Comput. 33 (2011) 2115–2143. [Google Scholar]
  39. J.B. Rundle, D.L. Turcotte, R. Shcherbakov, W. Klein and C. Sammis, Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 41 (2003). DOI: 10.1029/2003RG000135. [Google Scholar]
  40. C.G. Sammis, R.H. Osborne, J.L. Anderson, M. Banerdt and P. White, Self-similar cataclasis in the formation of fault gouge. Pure Appl. Geophys. 124 (1986) 53–78. [CrossRef] [Google Scholar]
  41. L.N. Slobodecki, Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Ucen. Zap 197 (1958) 54–112. [Google Scholar]
  42. H. Triebel, Theory of Function Spaces. Birkhäuser Basel (1983). [CrossRef] [Google Scholar]
  43. D.L. Turcotte, Crustal deformation and fractals, a review. In: Fractals and Dynamic Systems in Geoscience, edited by J.H. Kruhl. Springer (1994) 7–23. [CrossRef] [Google Scholar]
  44. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics. Cambridge University Press (1997). [Google Scholar]
  45. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]
  46. E. Weinan and B. Engquist, The heterognous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. [CrossRef] [MathSciNet] [Google Scholar]
  48. J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Methods Appl. Sci. 18 (2008) 77–105. [CrossRef] [MathSciNet] [Google Scholar]
  49. H. Yserentant, Old and new convergence proofs for multigrid methods. Acta Numer. 2 (1993) 285–326. [CrossRef] [Google Scholar]
  50. V.V. Zhikov and A.L. Pyatnitski, Homogenization of random singular structures and random measures. Izvestiya Rossi skaya Akademiya Nauk. Seriya Matematicheskaya 70 (2006) 23–74. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you