Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 2105 - 2139
DOI https://doi.org/10.1051/m2an/2022073
Published online 03 November 2022
  1. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, New York (1977). [Google Scholar]
  2. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Marion and R. Temam, Navier–Stokes equations: theory and approximation. Handb. Numer. Anal. 6 (1998) 503–689. [Google Scholar]
  4. F. Tone, Error analysis for a second order scheme for the Navier–Stokes equations. Appl. Numer. Math. 50 (2004) 93–119. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. He and W. Sun, Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45 (2007) 837–869. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Baker, Galerkin Approximations for the Navier–Stokes Equations. Harvard University, August (1976). [Google Scholar]
  7. Y. Guo and Y. He, Unconditional convergence and optimal L2 error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier–Stokes equations. Comput. Math. Appl. 75 (2018) 134–152. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Sun, Y. He and X. Feng, On error estimates of the pressure-correction projection methods for the time-dependent Navier–Stokes equations. Int. J. Numer. Anal. Mod. 8 (2011) 70–85. [Google Scholar]
  9. R. Ingram, A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier–Stokes equations. Math. Comp. 82 (2013) 1953–1973. [CrossRef] [MathSciNet] [Google Scholar]
  10. V.J. Ervin, W.J. Layton and M. Neda, Numerical analysis of filter-based stabilization for evolution equations. SIAM J. Numer. Anal. 50 (2012) 2307–2335. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Labovsky, W. Layton, C.C. Manica, M. Neda and L.G. Rebholz, The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations. Comput. Method. Appl. Mech. Eng. 198 (2009) 958–974. [CrossRef] [Google Scholar]
  12. V. DeCaria, W. Layton and H. Zhao, A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Modeling 17 (2020) 254–280. [MathSciNet] [Google Scholar]
  13. W. Layton, N. Mays, M. Neda and C. Trenchea, Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier–Stokes equations. ESAIM: M2AN 48 (2014) 765–793. [CrossRef] [EDP Sciences] [Google Scholar]
  14. J. Shen, On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Shen, On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62 (1992) 49–73. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Shan, W.J. Layton and H. Zheng, Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier–Stokes equations. Int. J. Numer. Anal. Mod. 10 (2013) 943–971. [Google Scholar]
  18. S. Badia and R. Codina, Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107 (2007) 533–557. [CrossRef] [MathSciNet] [Google Scholar]
  19. G.A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier–Stokes equations. Math. Comput. 39 (1982) 339–375. [CrossRef] [Google Scholar]
  20. K. Wang and Y. He, Convergence analysis for a higher order scheme for the time-dependent Navier–Stokes equations. Appl. Math. Comput. 218 (2012) 8269–8278. [MathSciNet] [Google Scholar]
  21. S. Badia and R. Codina, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44 (2006) 2159–2197. [Google Scholar]
  22. R. Bermejo, P.G. del Sastre and L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50 (2012) 3084–3109. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. De Frutos, B. Garca-Archilla and J. Novo, Postprocessing finite-element methods for the Navier–Stokes equations: the fully discrete case. SIAM J. Numer. Anal. 47 (2009) 596–621. [CrossRef] [Google Scholar]
  24. L.G. Rebholz, An energy-and helicity-conserving finite element scheme for the Navier–Stokes equations. SIAM J. Numer. Anal. 45 (2007) 1622–1638. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. De Frutos, B. Garca-Archilla, V. John and J. Novo, Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. 39 (2019) 1747–1786. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Garca-Archilla, V. John and J. Novo, Symmetric pressure stabilization for equal order finite element approximations to the time-dependent Navier–Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093–1129. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 43 (2005) 1572–1595. [CrossRef] [MathSciNet] [Google Scholar]
  28. A.T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20 (2000) 633–667. [CrossRef] [MathSciNet] [Google Scholar]
  29. Y. He, The Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations with nonsmooth initial data. Numer. Meth. Partial Diff. Equ. 28 (2012) 155–187. [CrossRef] [Google Scholar]
  30. Y. He, Stability and error analysis for a spectral Galerkin method for the Navier–Stokes equations with H2 or H1 initial data. Numer. Meth. Partial Diff. Equ. 21 (2005) 875–904. [CrossRef] [Google Scholar]
  31. I. Gallagher, Critical Function Spaces for the Wellposedness of the Navier–Stokes Initial Value Problem. Springer International Publishing, Cham (2016) 1–39. [Google Scholar]
  32. Y. He, Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations with L2 initial data. Numer. Meth. Partial Diff. Equ. 24 (2008) 79–103. [CrossRef] [Google Scholar]
  33. Y. He and W. Sun, Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76 (2007) 115–136. [CrossRef] [Google Scholar]
  34. B. Li and S. Ma, A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87 (2021) 1–16. [CrossRef] [Google Scholar]
  35. J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15–36. [Google Scholar]
  36. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19 (1985) 111–143. [CrossRef] [EDP Sciences] [Google Scholar]
  37. J. Guzmán and L.R. Scott, The Scott–Vogelius finite elements revisited. Math. Comput. 88 (2019) 515–529. [Google Scholar]
  38. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol. 159. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  39. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer-Verlag, New York (2006). [Google Scholar]
  40. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. Academic Press, Amsterdam (2003). [Google Scholar]
  41. R.B. Kellogg, J.E. Osborn, A regularity for the Stokes problem in a convex polygon, J. Funct. Anal. 21 (1976) 397–431. [CrossRef] [Google Scholar]
  42. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  43. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [CrossRef] [MathSciNet] [Google Scholar]
  44. M. Hofmanováa and K. Schratz, An exponential-type integrator for the KdV equation. Numer. Math. 136 (2017) 1117–1137. [CrossRef] [MathSciNet] [Google Scholar]
  45. A. Ostermann and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18 (2018) 731–755. [CrossRef] [MathSciNet] [Google Scholar]
  46. F. Rousset and K. Schratz, A general framework of low regularity integrators. SIAM J. Numer. Anal. 59 (2021) 1735–1768. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Simon, Compact sets in the spacel LP(0, T; B). Annali di Matematica pura ed applicata 146 (1986) 65–96. [CrossRef] [Google Scholar]
  48. J.L. Kelley, General Topology. Springer-Verlag (1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you