Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 2181 - 2196
DOI https://doi.org/10.1051/m2an/2022069
Published online 01 December 2022
  1. E.M. Wright, On the Coefficients of Power Series Having Exponential Singularities. J. London Math. Soc. 8 (1933) 71–79. [CrossRef] [Google Scholar]
  2. E.M. Wright, The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser. 11 (1940) 36–48. [CrossRef] [Google Scholar]
  3. B. Stanković, On the function of E. M. Wright. Publ. Inst. Math. (Beograd) (N.S.) 10 (1970) 113–124. [MathSciNet] [Google Scholar]
  4. Y. Luchko, The Wright function and its applications. In Vol. 1 Basic Theory, De Gruyter (2019) 241–268. [CrossRef] [Google Scholar]
  5. F. Mainardi and A. Consiglio, The Wright Functions of the Second Kind in Mathematical Physics. Mathematics 8 (2020). [Google Scholar]
  6. F. Mainardi, A. Mura and G. Pagnini, The M-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ. 2010 (2010) 104505. [Google Scholar]
  7. F. Mainardi, A tutorial on the basic special functions of Fractional Calculus. WSEAS Trans. Math. 19 (2020) 74–98. [CrossRef] [Google Scholar]
  8. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl and M.A. McClain, eds. [Google Scholar]
  9. Y. Luchko, Algorithms for evaluation of the Wright function for the real arguments’ values. Fract. Calc. Appl. Anal. 11 (2008) 57–75. [MathSciNet] [Google Scholar]
  10. Y. Luchko, J. Trujillo and M. Velasco, The Wright function and its numerical evaluation. Int. J. Pure Appl. Math 64 (2010) 567–575. [MathSciNet] [Google Scholar]
  11. B. Dingfelder and J.A.C. Weideman, An improved Talbot method for numerical Laplace transform inversion. Numer. Algorithms 68 (2015) 167–183. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Garrappa and M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39 (2013) 205–225. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.J. Colbrook and L.J. Ayton, A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations. J. Comput. Phys. 454 (2022) 110995. [CrossRef] [Google Scholar]
  14. M.J. Colbrook, Computing semigroups with error control. SIAM J. Numer. Anal. 60 (2022) 396–422. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.A.C. Weideman and L.N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76 (2007) 1341–1356. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.A.C. Weideman, Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 30 (2010) 334–350. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 77. [CrossRef] [Google Scholar]
  18. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996) 23–28. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Mainardi and G. Pagnini, The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 141 (2003) 51–62. [MathSciNet] [Google Scholar]
  20. A. Consiglio and F. Mainardi, Fractional diffusive waves in the Cauchy and Signalling problems, in Nonlocal and fractional operators, Edited by L. Beghin, F. Mainardi and R. Garrappa, In Vol. 26 of SEMA SIMAI Springer Ser., Edited by L. Formaggia and P. Pedregal, Springer, Cham (2021) 133–153. [CrossRef] [Google Scholar]
  21. Y.Z. Povstenko, Fractional heat conduction in infinite one-dimensional composite medium. J. Therm. Stress. 36 (2013) 351–363. [CrossRef] [Google Scholar]
  22. Y. Povstenko, Fundamental solutions to time-fractional heat conduction equations in two joint half-lines. Open Phys. 11 (2013) 1284–1294. [Google Scholar]
  23. F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66 (2017) 1281–1292. [Google Scholar]
  24. K. Diethelm, J.M. Ford, N.J. Ford and M. Weilbeer, Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186 (2006) 482–503. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Garrappa, Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simulation 110 (2015) 96–112. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you