Open Access
Volume 56, Number 6, November-December 2022
Page(s) 2297 - 2338
Published online 08 December 2022
  1. S. Noelle, Y. Xing and C.W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29–58. [NASA ADS] [CrossRef] [Google Scholar]
  2. V. Michel-Dansac, C. Berthon, S. Clain and F. Foucher, A well-balanced scheme for the shallow-water equations with topography. Comput. Math. App. 72 (2016) 568–593. [Google Scholar]
  3. L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. App. 39 (2000) 135–159. [Google Scholar]
  4. M.J. Castro and C. Parés, Well-balanced high-order finite volume methods for systems of balance laws. J. Sci. Comput. 82 (2020) 1–48. [Google Scholar]
  5. S. Noelle and N. Pankratza, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474–499. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [Google Scholar]
  7. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant systeme with a source term. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Xing and X. Zhang, Positivity-preserving well-balanced discontinuous galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57 (2013) 19–41. [Google Scholar]
  9. J. Dong, D. Fang Li, Exactly well-balanced positivity preserving nonstaggered central scheme for open-channel flows. Int. J. Numer. Methods Fluids 93 (2021) 273–292. [CrossRef] [Google Scholar]
  10. M. Lukáčová-Medvid’ová, S. Noelle and M. Kraft, Well-balanced finite volume evolution galerkin methods for the shallow water equations. J. Comput. Phys. 221 (2007) 122–147. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Bryson, Y. Epshteyn, A. Kurganov and G. Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Math. Model. Numer. Anal. 45 (2011) 423–446. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. J. Dong and D.F. Li, Well-balanced nonstaggered central schemes based on hydrostatic reconstruction for the shallow water equations with coriolis forces and topography. Math. Methods Appl. Sci. 44 (2021) 1358–1376. [Google Scholar]
  13. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7 (1954) 159–193. [Google Scholar]
  14. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [Google Scholar]
  15. G.S. Jiang, D. Levy, C.T. Lin, S. Osher and E. Tadmor, High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (1998) 2147–2168. [Google Scholar]
  16. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [Google Scholar]
  17. R.G. Touma and F. Kanbar, Well-balanced central schemes for two-dimensional systems of shallow water equations with wet and dry states. Appl. Math. Modell. 62 (2018) 728–750. [CrossRef] [Google Scholar]
  18. R. Touma, U. Koley and C. Klingenberg, Well-balanced unstaggered central schemes for the Euler equations with gravitation. SIAM J. Sci. Comput. 38 (2016) B773–B807. [Google Scholar]
  19. H. Tang and T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41 (2003) 487–515. [Google Scholar]
  20. W. Cao, W. Huang and R.D. Russell, Anr-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149 (1999) 221–244. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Kurganov, Z. Qu, O.S. Rozanova and T. Wu, Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs: applications to compressible Euler equations and granular hydrodynamics. Commun. Appl. Math. Comput. 3 (2021) 445–479. [Google Scholar]
  22. X. Xu, G. Ni and S. Jiang, A high-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows on unstructured meshes. J. Sci. Comput. 57 (2013) 278–299. [Google Scholar]
  23. J. Han and H. Tang, An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys. 220 (2007) 791–812. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Gaburro, M.J. Castro and M. Dumbser, Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity. Mon. Not. R. Astron. Soc. 477 (2018) 2251–2275. [Google Scholar]
  25. L. Arpaia and M. Ricchiuto, Well balanced residual distribution for the ALE spherical shallow water equations on moving adaptive meshes. J. Comput. Phys. 405 (2020) 109173. [CrossRef] [MathSciNet] [Google Scholar]
  26. L. Pareschi, G. Puppo and G. Russo, Central Runge-Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26 (2005) 979–999. [Google Scholar]
  27. F. Kanbar, R. Touma and C. Klingenberg, Well-balanced central schemes for the one and two-dimensional Euler systems with gravity. Appl. Numer. Math. 156 (2020) 608–626. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Dong, D. Li, X. Qian and S. Song, Stationary and positivity preserving unstaggered central schemes for two-dimensional shallow water equations with wet-dry fronts, submitted. [Google Scholar]
  29. S. Gottlieb, D.I. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific (2011). [Google Scholar]
  30. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
  31. R. Touma, Central unstaggered finite volume schemes for hyperbolic systems: applications to unsteady shallow water equations. Appl. Math. Comput. 213 (2009) 47–59. [CrossRef] [MathSciNet] [Google Scholar]
  32. G. Russo, Central Schemes for Conservation Laws with Application to Shallow Water Equations. Springer Milan (2005). [Google Scholar]
  33. X. Liu, A. Chertock and A. Kurganov, An asymptotic preserving scheme for the two-dimensional shallow water equations with coriolis forces. J. Comput. Phys. 391 (2019) 259–279. [CrossRef] [MathSciNet] [Google Scholar]
  34. J.G. Zhou, D.M. Causon, C.G. Mingham and D.M. Ingram, The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168 (2001) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  35. Y. Xing, X. Zhang and C.W. Shu, Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Res. 33 (2010) 1476–1493. [CrossRef] [Google Scholar]
  36. F. Zhou, G. Chen, S. Noelle and H. Guo, A well-balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes. Int. J. Numer. Methods Fluids 73 (2013) 266–283. [Google Scholar]
  37. M.T. Capilla and A. Balaguer-Beser, A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. J. Comput. Appl. Math. 252 (2013) 62–74. [CrossRef] [MathSciNet] [Google Scholar]
  38. E.F. Toro, Shock-capturing Methods for Free-Surface Shallow Flows. Wiley-Blackwell (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you