Open Access
Volume 57, Number 1, January-February 2023
Page(s) 167 - 189
Published online 19 January 2023
  1. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26 (1981) 17–32. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Eng. 124 (2001) 70–80. [Google Scholar]
  3. Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. [Google Scholar]
  4. K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (2002) 2323–2330. [Google Scholar]
  5. D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33 (2011) 2169–2198. [Google Scholar]
  6. K. Carlberg, C. Bou-Mosleh and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86 (2011) 155–181. [CrossRef] [Google Scholar]
  7. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao (2016). [Google Scholar]
  8. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations, In Vol. 92 of Unitext. Springer, Cham (2016). [Google Scholar]
  9. B. Haasdonk, J. Salomon and B. Wohlmuth, A reduced basis method for parametrized variational inequalities. SIAM J. Numer. Anal. 50 (2012) 2656–2676. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Glas and K. Urban, Numerical investigations of an error bound for reduced basis approximations of noncoercice variational inequalities. IFAC-PapersOnLine 48 (2015) 721–726. [CrossRef] [Google Scholar]
  11. Z. Zhang, E. Bader and K. Veroy, A slack approach to reduced-basis approximation and error estimation for variational inequalities. C. R. Math. Acad. Sci. Paris 354 (2016) 283–289. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.S. Kravchuk and P.J. Neittaanmäki, Variational and Quasi-Variational Inequalities in Mechanics, In Vol. 147 of Solid Mechanics and its Applications. Springer, Dordrecht (2007). [CrossRef] [Google Scholar]
  13. H. Hertz, Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92 (1882) 156–171. [CrossRef] [Google Scholar]
  14. P. Wriggers, Finite element algorithms for contact problems. Arch. Comput. Methods Eng. 2 (1995) 1–49. [CrossRef] [Google Scholar]
  15. G. Fichera, Elastostatics Problems with Unilateral Constraints: The Signorini Problem with Ambiguous Boundary Conditions. Ediz, Cremonese, Rome (1965) 613–679. [Google Scholar]
  16. G. Fichera, The Italian contribution to the mathematical theory of elasticity. Meccanica–J. Ital. Assoc. Theor. Appl. Mech. 19 (1984) 259–268. [Google Scholar]
  17. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, In Vol. 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). [Google Scholar]
  18. R. Monneau, A brief overview on the obstacle problem, In Vol. 202 of Progress in Mathematics. Birkhäuser, Basel (2001) 303–312. [CrossRef] [Google Scholar]
  19. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Scientific Computation, Springer-Verlag, Berlin (2008). [Google Scholar]
  20. M. Balajewicz, D. Amsallem and C. Farhat, Projection-based model reduction for contact problems. Int. J. Numer. Methods Eng. 106 (2016) 644–663. [CrossRef] [Google Scholar]
  21. A. Chatterjee, An introduction to the proper orthogonal decomposition. Curr. Sci. 78 (2000) 808–817. [Google Scholar]
  22. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [Google Scholar]
  23. D.D. Lee and H.S. Seung, Algorithms for nn-negative matrix factorization. NIPS’00, MIT Press, Cambridge, MA, USA (2000) 535–541. [Google Scholar]
  24. J. Fauque, I. Ramière and D. Ryckelynck, Hybrid hyper-reduced modeling for contact mechanics problems. Int. J. Numer. Methods Eng. 115 (2018) 117–139. [CrossRef] [Google Scholar]
  25. O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth, Reduced basis methods for pricing options with the Black-Scholes and Heston models. SIAM J. Financial Math. 6 (2015) 685–712. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Benaceur, A. Ern and V. Ehrlacher, A reduced basis method for parametrized variational inequalities applied to contact mechanics. Int. J. Numer. Methods Eng. 121 (2020) 1170–1197. [CrossRef] [Google Scholar]
  27. G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196 (2007) 1244–1260. [CrossRef] [Google Scholar]
  28. A.-L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34 (2012) A2812–A2836. [CrossRef] [Google Scholar]
  29. G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125 (2013) 115–152. [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102 (2015) 1136–1161. [CrossRef] [Google Scholar]
  31. S. Ali, F. Ballarin and G. Rozza, Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations. Comput. Math. Appl. 80 (2020) 2399–2416. [CrossRef] [MathSciNet] [Google Scholar]
  32. W. Dahmen, C. Plesken and G. Welper, Double greedy algorithms: Reduced basis methods for transport dominated problems. ESAIM Math. Model. Numer. Anal. 48 (2014) 623–663. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  33. A. Bakhta, T. Boiveau, Y. Maday and O. Mula, Epidemiological forecasting with model reduction of compartmental models. Application to the covid-19 pandemic. Biology 10 (2020) 22. [CrossRef] [PubMed] [Google Scholar]
  34. E. Bader, Z. Zhang and K. Veroy, An empirical interpolation approach to reduced basis approximations for variational inequalities. Math. Comput. Model. Dyn. Syst. 22 (2016) 345–361. [CrossRef] [MathSciNet] [Google Scholar]
  35. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  36. M.S. Andersen, J. Dahl and L. Vandenberghe, Cvxopt: A python package for convex optimization. Open source on (2008). [Google Scholar]
  37. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963–971. [CrossRef] [MathSciNet] [Google Scholar]
  38. F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math. 31 (1978/79) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  39. A. Ribes and C. Caremoli, Salomé platform component model for numerical simulation, in 31st Annual International Computer Software and Applications Conference. Vol. 2 (2007) 553–564. [Google Scholar]
  40. M. Abbas, G. Drouet and P. Hild, The local average contact (LAC) method. Comput. Methods Appl. Mech. Eng. 339 (2018) 488–513. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you