Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
|
|
---|---|---|
Page(s) | 865 - 891 | |
DOI | https://doi.org/10.1051/m2an/2022090 | |
Published online | 30 March 2023 |
- M.L. Adams and E.W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations. Prog. Nucl. Energy 40 (2002) 3–159. [CrossRef] [Google Scholar]
- A. Ahnesjö and M.M. Aspradakis, Dose calculations for external photon beams in radiotherapy. Phys. Med. Biol. 44 (1999) R99. [CrossRef] [PubMed] [Google Scholar]
- R. Alcouffe, R. O’Dell and F. Brinkley Jr., A first-collision source method that satisfies discrete Sn transport balance. Nucl. Sci. Eng. 105 (1990) 198–203. [CrossRef] [Google Scholar]
- P. Andreo, Monte Carlo techniques in medical radiation physics. Phys. Med. Biol. 36 (1991) 861–920. [CrossRef] [PubMed] [Google Scholar]
- C. Berthon, M. Frank, C. Sarazin and R. Turpault, Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 10 (2011) 1184–1210. [CrossRef] [Google Scholar]
- C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods. Phys. Med. Biol. 43 (1998) 517. [CrossRef] [PubMed] [Google Scholar]
- K.M. Case and P.F. Zweifel, Linear Transport Theory. Jou (1967). [Google Scholar]
- G. Ceruti and C. Lubich, An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021) 1–22. [Google Scholar]
- G. Ceruti, J. Kusch and C. Lubich, A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2022) 1–26. [Google Scholar]
- A. Dektor, A. Rodgers and D. Venturi, Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. J. Sci. Comput. 88 (2021) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Ding, L. Einkemmer and Q. Li, Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit. SIAM J. Numer. Anal. 59 (2021) 2254–2285. [CrossRef] [MathSciNet] [Google Scholar]
- L. Einkemmer, A low-rank algorithm for weakly compressible flow. SIAM J. Sci. Comput. 41 (2019) A2795–A2814. [CrossRef] [Google Scholar]
- L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the Vlasov-Poisson equation. SIAM J. Sci. Comput. 40 (2018) B1330–B1360. [CrossRef] [Google Scholar]
- L. Einkemmer and C. Lubich, A quasi-conservative dynamical low-rank algorithm for the Vlasov equation. SIAM J. Sci. Comput. 41 (2019) B1061–B1081. [CrossRef] [Google Scholar]
- L. Einkemmer and I. Joseph, A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. J. Comput. Phys. 443 (2021) 110495. [CrossRef] [Google Scholar]
- L. Einkemmer, A. Ostermann and C. Piazzola, A low-rank projector-splitting integrator for the Vlasov-Maxwell equations with divergence correction. J. Comput. Phys. 403 (2020) 109063. [CrossRef] [MathSciNet] [Google Scholar]
- L. Einkemmer, J. Hu and L. Ying, An efficient dynamical low-rank algorithm for the boltzmann-bgk equation close to the compressible viscous flow regime. SIAM J. Sci. Comput. 43 (2021) B1057–B1080. [CrossRef] [Google Scholar]
- L. Eyges, Multiple scattering with energy loss. Phys. Rev. 74 (1948) 1534. [CrossRef] [Google Scholar]
- M. Fippel and M. Soukup, A Monte Carlo dose calculation algorithm for proton therapy. Med. Phys. 31 (2004) 2263–2273. [CrossRef] [Google Scholar]
- M. Frank, H. Hensel and A. Klar, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy. SIAM J. Appl. Math. 67 (2007) 582–603. [CrossRef] [Google Scholar]
- B. Ganapol, Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos Nat. Lab. (1999). [Google Scholar]
- B.D. Ganapol, Analytical benchmarks for nuclear engineering applications. Case Stud. Neut. Transp. Theory (2008). [Google Scholar]
- C.K. Garrett and C.D. Hauck, A comparison of moment closures for linear kinetic transport equations: The line source benchmark. Transp. Theory Stat. Phys. 42 (2013) 203–235. [CrossRef] [Google Scholar]
- V. Grégoire and T. Mackie, State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83), Cancer/Radiothérapie 15 (2011) 555–559. [CrossRef] [Google Scholar]
- C.D. Hauck and R.G. McClarren, A collision-based hybrid method for time-dependent, linear, kinetic transport equations. Multiscale Model. Simul. 11 (2013) 1197–1227. [CrossRef] [MathSciNet] [Google Scholar]
- J.S. Hesthaven, C. Pagliantini and N. Ripamonti, Rank-adaptive structure-preserving reduced basis methods for hamiltonian systems. ESAIM: M2AN 56 (2022) 617–650. [Google Scholar]
- M. Hochbruck, M. Neher and S. Schrammer, Rank-adaptive Dynamical Low-rank Integra-tors for First-order and Second-order Matrix Differential Equations (2022). [Google Scholar]
- K.R. Hogstrom, M.D. Mills and P.R. Almond, Electron beam dose calculations. Phys. Med. Biol. 26 (1981) 445. [CrossRef] [PubMed] [Google Scholar]
- J. Hu and Y. Wang, An adaptive dynamical low rank method for the nonlinear boltzmann equation. J. Sci. Comput. 92 (2022) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
- X. Jia, J. Schümann, H. Paganetti and S.B. Jiang, GPU-based fast Monte Carlo dose calculation for proton therapy. Phys. Med. Biol. 57 (2012) 7783. [CrossRef] [PubMed] [Google Scholar]
- E. Kieri, C. Lubich and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values. SIAM J. Numer. Anal. 54 (2016) 1020–1038. [Google Scholar]
- O. Koch and C. Lubich, Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29 (2007) 434–454. [Google Scholar]
- T. Krieger and O.A. Sauer, Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol. 50 (2005) 859–868. [CrossRef] [PubMed] [Google Scholar]
- J. Kusch and P. Stammer, Numerical Testcases for “A Robust Collision Source Method for Rank Adaptive Dynamical Low-rank Approximation in Radiation Therapy” (2021). https://github.com/JonasKu/publication-A-robust-collision-source-method-for-rank-adaptive-dynamical-low-rankapproximation.git. [Google Scholar]
- J. Kusch, L. Einkemmer and G. Ceruti, On the stability of robust dynamical low-rank approximations for hyperbolic problemsPreprint arXiv:2107.07282 (2021). [Google Scholar]
- J. Kusch, G. Ceruti, L. Einkemmer and M. Frank, Dynamical low-rank approximation for burgers’equation with uncertainty. Int. J. Uncertain. Quantif. 12 (2022). [CrossRef] [MathSciNet] [Google Scholar]
- E.W. Larsen, M.M. Miften, B.A. Fraass and I.A. Bruinvis, Electron dose calculations using the method of moments. Med. Phys. 24 (1997) 111–125. [CrossRef] [Google Scholar]
- E.E. Lewis and W.F. Miller, Computational Methods of Neutron Transport (1984). [Google Scholar]
- C. Lubich and I.V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation. BIT 54 (2014) 171–188. [CrossRef] [MathSciNet] [Google Scholar]
- E. Musharbash and F. Nobile, Dual dynamically orthogonal approximation of incompressible navier stokes equations with random boundary conditions. J. Comput. Phys. 354 (2018) 135–162. [CrossRef] [MathSciNet] [Google Scholar]
- E. Olbrant and M. Frank, Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy. Comput. Math. Methods Med. 11 (2010) 313–339. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A. Ostermann, C. Piazzola and H. Walach, Convergence of a low-rank Lie-Trotter splitting for stiff matrix differential equations. SIAM J. Numer. Anal. 57 (2019) 1947–1966. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Peng and R.G. McClarren, A high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculations. J. Comput. Phys. 447 (2021) 110672. [CrossRef] [Google Scholar]
- Z. Peng, R.G. McClarren and M. Frank, A low-rank method for two-dimensional time-dependent radiation transport calculations. J. Comput. Phys. 421 (2020) 109735. [CrossRef] [MathSciNet] [Google Scholar]
- M. Yang and S.R. White, Time-dependent variational principle with ancillary Krylov subspace. Phys. Rev. B 102 (2020) 094315 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.