Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1171 - 1193
Published online 08 May 2023
  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56–58. [CrossRef] [Google Scholar]
  2. T. Lin, V. Bajpai, T. Ji and L. Dai, Chemistry of carbon nanotubes. Aust. J. Chem. 56 (2003) 635. [CrossRef] [Google Scholar]
  3. R.S. Ruoff and D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33 (1995) 925–930. [CrossRef] [Google Scholar]
  4. S.J. Tans, A.R.M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 6680 (1998) 49–52. [CrossRef] [Google Scholar]
  5. H. Dai, Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35 (2002) 1035–1044. [CrossRef] [PubMed] [Google Scholar]
  6. C. Shen, A.H. Brozena and Y. Wang, Double-walled carbon nanotubes: challenges and opportunities. Nanoscale 3 (2011) 503–518. [CrossRef] [PubMed] [Google Scholar]
  7. Q. Wang, G. Zhou and K. Lin, Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43 (2006) 6071–6084. [CrossRef] [Google Scholar]
  8. J. Yoon, C.Q. Ru and A. Mioduchowski, Noncoaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66 (2002) 233402. [CrossRef] [Google Scholar]
  9. J. Yoon, C.Q. Ru and A. Mioduchowski, Sound wave propagation in multiwall carbon nanotubes. J. Appl. Phys. 93 (2003) 4801–4806. [CrossRef] [Google Scholar]
  10. J. Yoon, Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63 (2003) 1533–1542. [CrossRef] [Google Scholar]
  11. J. Yoon, C.Q. Ru and A. Mioduchowski, Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Compos. Part B: Eng. 35 (2004) 87–93. [CrossRef] [Google Scholar]
  12. J. Yoon, C.Q. Ru and A. Mioduchowski, Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams. J. Appl. Mech. 72 (2005) 10. [CrossRef] [Google Scholar]
  13. Y.Y. Zhang, C.M. Wang and V.B.C. Tan, Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J. Eng. Mech. 132 (2006) 952–958. [Google Scholar]
  14. S.P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 41 (1921) 744–746. [CrossRef] [Google Scholar]
  15. A. Soufyane, Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. – Ser. I – Math. 328 (1999) 731–734. [Google Scholar]
  16. J.E.M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems–global existence and exponential stability. J. Math. Anal. App. 276 (2002) 248–278. [CrossRef] [Google Scholar]
  17. F. Ammar-Khodja, A. Benabdallah, J.M. Rivera and R. Racke, Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194 (2003) 82–115. [CrossRef] [Google Scholar]
  18. S.A. Messaoudi and B. Said-Houar, Uniform decay in a Timoshenko-type system with past history. J. Math. Anal. App. 360 (2009) 459–475. [CrossRef] [Google Scholar]
  19. D.S.A. Júnior, M.L. Santos and J.E.M. Rivera, Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36 (2013) 1965–1976. [CrossRef] [MathSciNet] [Google Scholar]
  20. C.Q. Ru, Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62 (2000) 16962–16967. [CrossRef] [Google Scholar]
  21. S. Berber, Y.-K. Kwon and D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84 (2000) 4613–4616. [CrossRef] [PubMed] [Google Scholar]
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 84. Springer, New York (1983). [Google Scholar]
  23. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics Series. Chapman and Hall/CRC (1999). [Google Scholar]
  24. J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847. [Google Scholar]
  25. L. Gearhart, Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236 (1978) 385–394. [CrossRef] [Google Scholar]
  26. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Vol. 194. Grad. Texts in Math. , Springer-Verlag (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you