Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1657 - 1690
Published online 26 May 2023
  1. R.L. Armentano, J.G. Barra, J. Levenson, A. Simon and R.H. Pichel, Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76 (1995) 468–478. [CrossRef] [PubMed] [Google Scholar]
  2. C.J. Arthurs, R. Khlebnikov, A. Melville, M. Marčan, A. Gomez, D. Dillon-Murphy, F. Cuomo, M. Silva Vieira, J. Schollenberger, S.R. Lynch, et al., Crimson: an open-source software framework for cardiovascular integrated modelling and simulation. PLOS Comput. Biol. 17 (2021) 1008881. [Google Scholar]
  3. N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevskii and V. Volpert, Methods of blood flow modelling. Math. Model. Nat. Phenom. 11 (2016) 1–25. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. B.S. Brook, S.A.E.G. Falle and T.J. Pedley, Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J. Fluid Mech. 396 (1999) 223–256. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Čanić, Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties. Comput. Vis. Sci. 4 (2002) 147–155. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Čanić and E.H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci. 26 (2003) 1161–1186. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Čanić, C.J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni and A. Mikelić, Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34 (2006) 575–592. [CrossRef] [PubMed] [Google Scholar]
  8. S. Čanić, M. Galovic, M. Ljulj and J. Tambaca, A dimension-reduction based coupled model of mesh-reinforced shells. SIAM J. Appl. Math. 77 (2017) 744–769. [CrossRef] [MathSciNet] [Google Scholar]
  9. V. Casulli, M. Dumbser and E.F. Toro, Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 257–272. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Fambri, M. Dumbser and V. Casulli, An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 1170–1198. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani and P. Zunino, Advances on numerical modelling of blood flow problems, in European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000) (2000) 11–14. [Google Scholar]
  12. L. Formaggia, D. Lamponi and A. Quarteroni, One-dimensional models for blood flow in arteries. J. Eng. Math. 47 (2003) 251–276. [CrossRef] [Google Scholar]
  13. A.J. Geers, I. Larrabide, H.G. Morales and A.F. Frangi, Comparison of steady-state and transient blood flow simulations of intracranial aneurysms, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE (2010) 2622–2625. [Google Scholar]
  14. J.-F. Gerbeau, M. Vidrascu and P. Frey, Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83 (2005) 155–165. [CrossRef] [Google Scholar]
  15. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [Google Scholar]
  16. G. Guidoboni, R. Glowinski, N. Cavallini and S. Canic, Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228 (2009) 6916–6937. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Ho, A. Squelch and Z. Sun, Modelling of aortic aneurysm and aortic dissection through 3D printing. J. Med. Radiat. Sci. 64 (2017) 10–17. [CrossRef] [Google Scholar]
  18. W. Huberts, K. Van Canneyt, P. Segers, S. Eloot, J.H.M. Tordoir, P. Verdonck, F.N. van De Vosse and E.M.H. Bosboom, Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. J. Biomech. 45 (2012) 1684–1691. [CrossRef] [Google Scholar]
  19. S. Jerez and M. Uh, A flux-limiter method for modeling blood flow in the aorta artery. Math. Comput. Modell. 52 (2010) 962–968. [CrossRef] [Google Scholar]
  20. J. Jung, R.W. Lyczkowski, C.B. Panchal and A. Hassanein, Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J. Biomech. 39 (2006) 2064–2073. [CrossRef] [Google Scholar]
  21. D.N. Ku, Blood flow in arteries. Ann. Rev. Fluid Mech. 29 (1997) 399–434. [CrossRef] [Google Scholar]
  22. D.N. Ku, D.P. Giddens, C.K. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5 (1985) 293–302. [Google Scholar]
  23. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Commun. Math. Sci. 5 (2007) 133–160. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31 (2009) 1742–1773. [Google Scholar]
  25. A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [Google Scholar]
  26. F. Kyriakou, W. Dempster and D. Nash, Analysing the cross-section of the abdominal aortic aneurysm neck and its effects on stent deployment. Sci. Reports 10 (2020) 1–12. [Google Scholar]
  27. J. Leibinger, M. Dumbser, U. Iben and I. Wayand, A path-conservative osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes. Appl. Numer. Math. 105 (2016) 47–63. [CrossRef] [MathSciNet] [Google Scholar]
  28. G.I. Montecinos, L.O. Müller and E.F. Toro, Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. J. Comput. Phys. 266 (2014) 101–123. [CrossRef] [MathSciNet] [Google Scholar]
  29. L.O. Müller and P.J. Blanco, A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow. J. Comput. Phys. 300 (2015) 423–437. [CrossRef] [MathSciNet] [Google Scholar]
  30. L.O. Müller, C. Parés and E.F. Toro, Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. J. Comput. Phys. 242 (2013) 53–85. [CrossRef] [MathSciNet] [Google Scholar]
  31. L.O. Müller, G. Leugering and P.J. Blanco, Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models. J. Comput. Phys. 314 (2016) 167–193. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system. Handb. Numer. Anal. 12 (2004) 3–127. [Google Scholar]
  33. A. Quarteroni, A. Veneziani and C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302 (2016) 193–252. [Google Scholar]
  34. A. Quarteroni, A. Manzoni and C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26 (2017) 365–590. [CrossRef] [MathSciNet] [Google Scholar]
  35. N.P. Smith, A.J. Pullan and P.J. Hunter, An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62 (2002) 990–1018. [CrossRef] [Google Scholar]
  36. F.P.P. Tan, A. Borghi, R.H. Mohiaddin, N.B. Wood, S. Thom and X.Y. Xu, Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput. Struct. 87 (2009) 680–690. [CrossRef] [Google Scholar]
  37. C.A. Taylor and C.A. Figueroa, Patient-specific modeling of cardiovascular mechanics. Ann. Rev. Biomed. Eng. 11 (2009) 109–134. [CrossRef] [PubMed] [Google Scholar]
  38. F.N. van de Vosse and N. Stergiopulos, Pulse wave propagation in the arterial tree. Ann. Rev. Fluid Mech. 43 (2011) 467–499. [CrossRef] [Google Scholar]
  39. M. Willemet and J. Alastruey, Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics. Ann. Biomed. Eng. 43 (2015) 190–206. [CrossRef] [PubMed] [Google Scholar]
  40. N. Xiao, J. Alastruey and C. Alberto Figueroa, A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 204–231. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you