Open Access
Volume 57, Number 4, July-August 2023
Page(s) 1863 - 1892
Published online 03 July 2023
  1. Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. [Google Scholar]
  2. Y. Achdou and V. Perez, Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7 (2012) 197. [CrossRef] [MathSciNet] [Google Scholar]
  3. Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50 (2012) 77–109. [Google Scholar]
  4. A.R. Appadu, Numerical solution of the 1D advection–diffusion equation using standard and nonstandard finite difference schemes. J. Appl. Math. 2013 (2013) 734374. [Google Scholar]
  5. A. Bagdasaryan, Optimal control synthesis for affine nonlinear dynamic systems. J. Phys. Conf. Ser. 1391 (2019) 012113. [CrossRef] [Google Scholar]
  6. F. Camilli and F. Silva, A semi-discrete approximation for a first order mean field game problem. Netw. Heterog. Media 7 (2012) 263. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Cardaliaguet, Notes on mean field games. Technical report (2010). [Google Scholar]
  8. P. Cardaliaguet and S. Hadikhanloo, Learning in mean field games: the fictitious play. ESAIM – Control Optim. Calc. Var. 23 (2017) 569–591. [CrossRef] [EDP Sciences] [Google Scholar]
  9. E. Carlini and F.J. Silva, A fully discrete semi-lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52 (2014) 45–67. [CrossRef] [MathSciNet] [Google Scholar]
  10. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions, in Stochastic Modelling and Applied Probability, 2nd edition., Springer-Verlag, New York (2006). [Google Scholar]
  11. C. Gardiner, Stochastic methods: a handbook for the natural and social sciences, in Springer Series in Synergetics, fourth ed., Springer-Verlag, Berlin Heidelberg (2009). [Google Scholar]
  12. O. Guéant, Mean field games equations with quadratic Hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22 (2012) 1250022. [CrossRef] [MathSciNet] [Google Scholar]
  13. O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, Springer Berlin, Heidelberg (2011) 205–266. [CrossRef] [Google Scholar]
  14. H.J. Kappen, Linear theory for control of nonlinear stochastic systems. Phys. Rev. Lett. 95 (2005) 200201. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. H.J. Kappen, Path integrals and symmetry breaking for optimal control theory. J. Stat. Mech. Theory Exp. 2005 (2005) P11011. [CrossRef] [Google Scholar]
  16. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
  17. M. Lauriere, Numerical methods for mean field games and mean field type control. Preprint arXiv:2106.06231 (2021). [Google Scholar]
  18. P. Lavigne and L. Pfeiffer, Generalized conditional gradient and learning in potential mean field games. Preprint arXiv: 2209.12772 (2022). [Google Scholar]
  19. R.E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 15 (1999) 201–214. [CrossRef] [Google Scholar]
  20. R.E. Mickens, Nonstandard finite difference schemes for reaction–diffusion equations having linear advection. Numer. Methods Partial Differ. Equ. 16 (2000) 361–364. [CrossRef] [Google Scholar]
  21. H. Nijmeijer and A. Van der Schaft, Nonlinear Dynamical Control Systems, Chapter 6, Springer (1990). [CrossRef] [Google Scholar]
  22. S. Perrin, J. Perolat, M. Lauriere, M. Geist, R. Elie and O. Pietquin, Fictitious play for mean field games: continuous time analysis and applications. Adv. Neural Inf. Process Syst. 33 (2020) 13199–13213. [Google Scholar]
  23. I. Swiecicki, T. Gobron and D. Ullmo, Schrödinger approach to mean field games. Phys. Rev. Lett. 116 (2016) 128701. [CrossRef] [PubMed] [Google Scholar]
  24. E. Todorov, Linearly-solvable markov decision problems, in Advances in Neural Information Processing Systems 19, MIT Press (2007) 1369–1376. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you