Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2595 - 2621
Published online 08 August 2023
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, in Pure and Applied Mathematics. Elsevier Science (2003). [Google Scholar]
  2. A. Agudelo-Toro and A. Neef, Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. J. Neural Eng. 10 (2013) 026019. [Google Scholar]
  3. G. Akrivis, Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations. IMA J. Numer. Anal. 38 (2017) 1768–1796. [Google Scholar]
  4. U.M. Ascher, S.J. Ruuth and B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. [CrossRef] [MathSciNet] [Google Scholar]
  5. P.-E. Bécue, Modélisation et Simulation de L’électrophysiologie Cardiaque à L’échelle Microscopique. Ph.D. thesis, Université de Bordeaux, France (2018). [Google Scholar]
  6. C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, Springer, Netherlands, 1993, pp. 269–286. [CrossRef] [Google Scholar]
  7. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer (2010). [Google Scholar]
  8. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, USA (2002). [Google Scholar]
  9. E.D. Copene and J.P. Keener, Ephaptic coupling of cardiac cells through the junctional electric potential. J. Math. Biol. 57 (2008) 265–284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Vol. 1. Masson, Paris (1984). [Google Scholar]
  11. K. Djabella, M. Landau and M. Sorine, A two-variable model of cardiac action potential with controlled pacemaker activity and ionic current interpretation. 46th IEEE Conference on Decision and Control, New Orleans, LA, USA (2007) 5186–5191. [Google Scholar]
  12. S. Domínguez, J. Reimer, K.R. Green, R. Zolfaghari and R.J. Spiteri, A simulation-based method to study the LQT1 syndrome remotely using the EMI model. In Emerging Technologies in Biomedical Engineering and Sustainable TeleMedicine, Springer International Publishing (2021) 179–189. [CrossRef] [Google Scholar]
  13. A. Ern and J.L. Guermond, Theory and practice of finite elements, in Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  14. D. Fokoué, Numerical methods for the microscopic cardiac electrophysiology model, Ph.D. thesis, Université d’Ottawa, Canada (2022). [Google Scholar]
  15. P.C. Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semi-Groups and Functional Analysis. Birkhäuser Basel (2002) 49–78. [CrossRef] [Google Scholar]
  16. P.C. Franzone, L.F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology. Vol. 13. Springer International Publishing (2014). [CrossRef] [Google Scholar]
  17. D.E. Goldman, Electrodiffusion in membranes, in Membrane Transport: People and Ideas. Springer, New York (1989) 251–259. [CrossRef] [Google Scholar]
  18. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500–544. [CrossRef] [PubMed] [Google Scholar]
  19. K.H. Jæger and A. Tveito, Deriving the bidomain model of cardiac electrophysiology from a cell-based model; properties and comparisons. Front. Physiol. 12 (2022) 811029. [CrossRef] [Google Scholar]
  20. K.H. Jæger, A.G. Edwards, A. McCulloch and A. Tveito, Properties of cardiac conduction in a cell-based computational model. PLOS Comput. Biol. 15 (2019) 1–35. [Google Scholar]
  21. K.H. Jæger, A.G. Edwards, W.R. Giles and A. Tveito, From millimeters to micrometers; re-introducing myocytes in models of cardiac electrophysiology. Front. Physiol. 12 (2021) 763584. [CrossRef] [Google Scholar]
  22. K.H. Jæger, K.G. Hustad, X. Cai and A. Tveito, Efficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells. Front. Phys. 8 (2021) 579461. [CrossRef] [Google Scholar]
  23. J.P. Keener and J. Lin, Ephaptic coupling in cardiac myocytes. IEEE Trans. Biomed. Eng. 60 (2013) 576–582. [CrossRef] [PubMed] [Google Scholar]
  24. J. Lin, J.P. Keener, Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Proc. Natl. Acad. Sci. 107 (2010) 20935–20940. [CrossRef] [PubMed] [Google Scholar]
  25. J. Lin and J.P. Keener, Microdomain effects on transverse cardiac propagation. Biophys. J. 106 (2014) 925–931. [CrossRef] [Google Scholar]
  26. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, in Etudes Mathématiques, Dunod (1969). [Google Scholar]
  27. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, in Travaux et recherches mathématiques, Dunod (1968). [Google Scholar]
  28. C.H. Luo and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68 (1991) 1501–1526. [Google Scholar]
  29. C.C. Mitchell and D.G. Schaeffer, A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65 (2003) 767–793. [CrossRef] [Google Scholar]
  30. Y. Mori and C.S. Peskin, A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes. Commun. Appl. Math. Comput. Sci. 4 (2009) 85–134. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.C. Neu and W. Krassowska, Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21 (1993) 137–199. [Google Scholar]
  32. S. Niederer, L. Mitchell, N. Smith and G. Plank, Simulating human cardiac electrophysiology on clinical time-scales. Front. Physiol. 2 (2011) 14. [CrossRef] [Google Scholar]
  33. L. Perko, Differential Equations and Dynamical Systems. Springer-Verlag, Berlin, Heidelberg (1991). [CrossRef] [Google Scholar]
  34. J.B. Picone, N. Sperelakis and J.E. Mann, Expanded model of the electric field hypothesis for propagation in cardiac muscle. Math. Comput. Model. 15 (1991) 17–35. [CrossRef] [Google Scholar]
  35. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edition, Springer, Berlin, New York (1997). [Google Scholar]
  36. P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems. Mathematical Aspects of Finite Element Methods. Vol. 606, Springer, Berlin, Heidelberg (1997). 292–315. [Google Scholar]
  37. P.-A. Raviart, J.-M. Thomas, Introduction à L’analyse Numérique des équations aux Dérivées Partielles. Masson (1983). [Google Scholar]
  38. P.J. Roache, Verification and Validation in Computational Science and Engineering. Hermosa Publishers (1998). [Google Scholar]
  39. S.F. Roberts, J.G. Stinstra and C.S. Henriquez, Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Biophys. J. 95 (2008) 3724–3737. [CrossRef] [Google Scholar]
  40. S.J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34 (1995) 148–176. [CrossRef] [MathSciNet] [Google Scholar]
  41. N. Sperelakis, An electric field mechanism for transmission of excitation between myocardial cells. Circ. Res. 91 (2002) 985–987. [CrossRef] [PubMed] [Google Scholar]
  42. N. Sperelakis and K. McConnell, Electric field interactions between closely abutting excitable cells. IEEE Eng. Med. Biol. Mag. 21 (2002) 77–89. [CrossRef] [Google Scholar]
  43. J.G. Stinstra, B. Hopenfeld and R.S. MacLeod, On the passive cardiac conductivity. Ann. Biomed. Eng. 33 (2005) 1743–1751. [CrossRef] [PubMed] [Google Scholar]
  44. J.G. Stinstra, S.F. Roberts, J.B. Pormann, R.S. MacLeod and C.S. Henriquez, A model of 3D propagation in discrete cardiac tissue. Comput. Cardiol. 33 (2006) 41–44. [Google Scholar]
  45. J. Stinstra, R. MacLeod and C. Henriquez, Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level. Ann. Biomed. Eng. 38 (2010) 1399–1414. [CrossRef] [PubMed] [Google Scholar]
  46. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Vol. 1, 1st edition. Springer, Berlin Heidelberg (2006). [Google Scholar]
  47. V. Thomée, Galerkin Finite Element Method for Parabolic Problems. Vol. 1054. Springer-Verlag (2006). [Google Scholar]
  48. L. Tung, A Bi-domain Model for Describing Ischemic Myocardial D-C Potentials, Ph.D. thesis, MIT, Cambridge, MA (1978). [Google Scholar]
  49. A. Tveito, K.-A. Mardal and M.E. Rognes, Modeling Excitable Tissue the EMI Framework, Vol. 7. Springer International Publishing, Cham (2021). [CrossRef] [Google Scholar]
  50. A. Tveito, K.H. Jæger, M. Kuchta, K.-A. Mardal and M.E. Rognes, A cell-based framework for numerical modeling of electrical conduction in cardiac tissue. Front. Phys. 5 (2017) 48. [CrossRef] [Google Scholar]
  51. A. Tveito, K.H. Jæger, G.T. Lines, L. Paszkowski, J. Sundnes, A.G. Edwards, T. Māki-Marttunen, G. Halnes and G.T. Einevoll, An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons. Front. Comput. Neurosci. 11 (2017) 27. [CrossRef] [Google Scholar]
  52. M. Veneroni, Reaction diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Methods Appl. Sci. 29 (2006) 1631–1661. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you