Open Access
Volume 57, Number 4, July-August 2023
Page(s) 1953 - 1980
Published online 03 July 2023
  1. G. Allaire and T. Yamada, Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures. Numer. Math. 140 (2018) 265–326. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire, M. Briane and M. Vanninathan, A comparison betwe9en two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SeMA 73 (2016) 237–259. [CrossRef] [MathSciNet] [Google Scholar]
  3. I.V. Andrianov, V.I. Bolshakov, V.V. Danishevkyy and D. Weichert, Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc. Roy. Soc. A 464 (2008) 1181–1201. [CrossRef] [Google Scholar]
  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence, RI (2011). [Google Scholar]
  5. P.T. Callaghan and J. Stepianik, Frequency-domain analysis of spin motion using modulated-gradient NMR. J. Magn. Reson. Ser. A 117 (1995) 118–122. [CrossRef] [Google Scholar]
  6. P.T. Callaghan, A. Coy, D. MacGowan, K.J. Packer and F.O. Zelaya, Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351 (1991) 467–469. [CrossRef] [Google Scholar]
  7. J. Chen, W. Liu, H. Zhang, L. Lacy, X. Yang, S.-K. Song, S.A. Wickline and X. Yu, Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am. J. Physiol. – Heart Circulatory Physiol. 289 (2005) H1898–H1907. [CrossRef] [PubMed] [Google Scholar]
  8. J. Coatléven, H. Haddar and J.-R. Li, A new macroscopic model including membrane exchange for diffusion MRI. SIAM J. Appl. Math. 74 (2014) 516–546. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Conca, R. Orive and M. Vanninathan, On Burnett coefficients in periodic media. J. Math. Phys. 3 (2006) 11. [Google Scholar]
  10. D.S. Grebenkov, From the microstructure to diffusion MRI, and back, in Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids and Heterogeneous Materials. New Developments in NMR, edited by R. Valiullin. The Royal Society of Chemistry, Cambridge (2017) 52–110. [Google Scholar]
  11. H. Haddar, J.-R. Li and S. Schiavi, Adapting the Kärger model to account for finite diffusion-encoding pulses in diffusion MRI. IMA J. Appl. Math. 81 (2016) 779–794. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Haddar, J.-R. Li and S. Schiavi, A macroscopic model for the diffusion MRI signal accounting for time-dependent diffusivity. SIAM J. Appl. Math. 76 (2016) 930–949. [CrossRef] [MathSciNet] [Google Scholar]
  13. K.D. Harkins, J.-P. Galons, T.W. Secomb and T.P. Trouard, Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn. Reson. Med. 62 (2009) 1414–1422. [CrossRef] [Google Scholar]
  14. F. Hecht, O. Pironneau and J. Morice, Freefem. [Google Scholar]
  15. T. Hui and C. Oskay, A high order homogenization model for transient dynamics of heterogeneous media including micro-inertia effects. Comput. Methods Appl. Mech. Eng. 273 (2014) 181–203. [CrossRef] [Google Scholar]
  16. J.H. Jensen, J.A. Helpern, A. Ramani, H. Lu and K. Kaczynski, Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53 (2005) 1432–1440. [CrossRef] [PubMed] [Google Scholar]
  17. M. Kchaou, H. Haddar and M. Moakher, The derivation of homogenized diffusion kurtosis models for diffusion MRI. J. Magn. Reson. 298 (2019) 48–57. [CrossRef] [Google Scholar]
  18. D. Le Bihan and H. Johansen-Berg, Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61 (2012) 324–341. [CrossRef] [PubMed] [Google Scholar]
  19. J.-R. Li, H.T. Nguyen, D. Van Nguyen, H. Haddar, J. Coatleven and D. Le Bihan, Numerical study of a macroscopic finite pulse model of the diffusion MRI signal. J. Magn. Reson. 248 (2014) 54–65. [CrossRef] [Google Scholar]
  20. H. Lu, J.H. Jensen, A. Ramani and J.A. Helpern, Three dimensional characterization of non Gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 19 (2006) 236–247. [CrossRef] [PubMed] [Google Scholar]
  21. S. Mori, Introduction to Diffusion Tensor Imaging. Elsevier, Amsterdam (2007). [Google Scholar]
  22. M.E. Moseley, J. Kucharczyk, J. Mintorovitch, Y. Cohen, J. Kurhanewicz, N. Derugin, H. Asgari and D. Norman, Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. Am. J. Neuroradiol. 11 (1990) 423–429. [Google Scholar]
  23. S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edin. 127 (1997) 1263–1278. [CrossRef] [Google Scholar]
  24. D.V. Nguyen, A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging of biological tissues. Ph.D. thesis CMAP, Ecole Polytechnique (2014). [Google Scholar]
  25. M. Peerlings, M. Ameen and R.H.J. Geers, Higher-order asymptotic homogenization of periodic linear elastic composite materials at low scale separation. Contrib. Found. Multi. Res. Mech. 3 (2016) 2544–2545. [Google Scholar]
  26. W.S. Price, Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1: Basic theory. Concepts Magn. Reson. 9 (1997) 299–336. [CrossRef] [Google Scholar]
  27. D. Rohmer, A. Sitek and G.T. Gullberg, Reconstruction and visualization of fiber and sheet structure with regularized tensor diffusion MRI in the human heart. Lawrence Berkeley National Laboratory Publication. LBNL-60277 (2006). [Google Scholar]
  28. F. Santosa and W. Synes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math 51 (1991) 984–1005. [CrossRef] [MathSciNet] [Google Scholar]
  29. H.C. Torrey, Bloch equations with diffusion terms. Phys. Rev. Online Arch. (Prola) 104 (1956) 563–565. [Google Scholar]
  30. S. Warach, D. Chien, W. Li, M. Ronthal and R.R. Edelman, Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42 (1992) 1717–1723. [CrossRef] [PubMed] [Google Scholar]
  31. J. Xu, M.D. Does and J.C. Gore, Numerical study of water diffusion in biological tissues using an improved finite difference method. Phys. Med. Biol. 52 (2007) N111. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you