Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 2427 - 2450 | |
DOI | https://doi.org/10.1051/m2an/2023058 | |
Published online | 18 July 2023 |
- V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997). [Google Scholar]
- W. Bao and X. Ruan, Computing ground states of Bose-Einstein Condensates with higher order interaction via a regularized density function formulation. SIAM J. Sci. Comput. 41 (2019) B1284–B1309. [CrossRef] [Google Scholar]
- G. Benettin and P. Sempio, Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field. Nonlinearity 7 (1994) 281–304. [CrossRef] [MathSciNet] [Google Scholar]
- C.K. Birdsall and A.B. Langdon, Plasma Physics Via Computer Simulation. Series in Plasma Physics. Taylor & Francis, New York (2005). [Google Scholar]
- J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code, in Proceeding of Fourth Conference on Numerical Simulations of Plasmas (1970) 3–67. [Google Scholar]
- A.J. Brizard and T.S. Hahm, Foundations of nonlinear gyrokinetic theory. Rev. Modern Phys. 79 (2007) 421–468. [CrossRef] [MathSciNet] [Google Scholar]
- L. Brugnano, J.I. Montijano and L. Rándz, High-order energy-conserving line integral methods for charged particle dynamics. J. Comput. Phys. 396 (2019) 209–227. [CrossRef] [MathSciNet] [Google Scholar]
- L. Brugnano, F. Iavernaro and R. Zhang, Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles. J. Comput. Appl. Math. 380 (2020) 112994. [CrossRef] [MathSciNet] [Google Scholar]
- J.R. Cary and A.J. Brizard, Hamiltonian theory of guiding-center motion. Rev. Modern Phys. 81 (2009) 693–738. [CrossRef] [MathSciNet] [Google Scholar]
- P. Chartier, N. Crouseilles, M. Lemou and F. Méhats, Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129 (2015) 211–250. [CrossRef] [MathSciNet] [Google Scholar]
- P. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85 (2016) 2863–2885. [CrossRef] [Google Scholar]
- P. Chartier, N. Crouseilles and X. Zhao, Numerical methods for the two-dimensional Vlasov-Poisson equation in the finite Larmor radius approximation regime. J. Comput. Phys. 375 (2018) 619–640. [CrossRef] [MathSciNet] [Google Scholar]
- P. Chartier, N. Crouseilles, M. Lemou, F. Méhats and X. Zhao, Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field. Math. Comput. 88 (2019) 2697–2736. [CrossRef] [Google Scholar]
- P. Chartier, N. Crouseilles, M. Lemou, F. Méhats and X. Zhao, Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction. SIAM J. Sci. Comput. 42 (2020) B520–B547. [CrossRef] [Google Scholar]
- N. Crouseilles, M. Lemou, F. Méhats and X. Zhao, Uniformly accurate Particle-In-Cell method for the long time two-dimensional Vlasov-Poisson equation with uniform strong magnetic field. J. Comput. Phys. 346 (2017) 172–190. [CrossRef] [MathSciNet] [Google Scholar]
- N. Crouseilles, S. Jin and M. Lemou, Nonlinear geometric optics method based multi-scale numerical schemes for highly-oscillatory transport equations. Math. Mod. Meth. App. Sci. 27 (2017) 2031–2070. [CrossRef] [Google Scholar]
- N. Crouseilles, S.A. Hirstoaga and X. Zhao, Multiscale Particle-In-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field. Comput. Phys. Comm. 222 (2018) 136–151. [CrossRef] [Google Scholar]
- F. Filbet and M. Rodrigues, Asymptotically stable Particle-In-Cell methods for the Vlasov-Poisson system with a strong external magnetic field. SIAM J. Numer. Anal. 54 (2016) 1120–1146. [CrossRef] [MathSciNet] [Google Scholar]
- F. Filbet and M. Rodrigues, Asymptotically preserving Particle-In-Cell methods for inhomogeneous strongly magnetized plasmas. SIAM J. Numer. Anal. 55 (2017) 2416–2443. [CrossRef] [MathSciNet] [Google Scholar]
- F. Filbet, T. Xiong and E. Sonnendrücker, On the Vlasov-Maxwell system with a strong magnetic field. SIAM J. Appl. Math. 78 (2018) 1030–1055. [CrossRef] [MathSciNet] [Google Scholar]
- F. Filbet, M. Rodrigues and H. Zakerzadeh, Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas. Numer. Math. 149 (2021) 549–593. [CrossRef] [MathSciNet] [Google Scholar]
- E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method. Math. Models Methods Appl. Sci. 19 (2009) 175–197. [CrossRef] [MathSciNet] [Google Scholar]
- E. Frénod, S. Hirstoaga, M. Lutz and E. Sonnendrücker, Long time behavior of an exponential integrator for a Vlasov-Poisson system with strong magnetic field. Commun. Comput. Phys. 18 (2015) 263–296. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer and C. Lubich, Energy behaviour of the Boris method for charged-particle dynamics. BIT 58 (2018) 969–979. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer and C. Lubich, Symmetric multistep methods for charged-particle dynamics. SMAI J. Comput. Math. 3 (2017) 205–218. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer and C. Lubich, Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field. Numer. Math. 144 (2020) 699–728. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition. Springer-Verlag, Berlin, Heidelberg (2006). [Google Scholar]
- E. Hairer, C. Lubich and B. Wang, A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field. Numer. Math. 144 (2020) 787–809. [CrossRef] [MathSciNet] [Google Scholar]
- Y. He, Y. Sun, J. Liu and H. Qin, Volume-preserving algorithms for charged particle dynamics. J. Comput. Phys. 281 (2015) 135–147. [CrossRef] [MathSciNet] [Google Scholar]
- Y. He, Z. Zhou, Y. Sun, J. Liu and H. Qin, Explicit K-symplectic algorithms for charged particle dynamics. Phys. Lett. A 381 (2017) 568–573. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 (2006) 1069–1090. [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
- C. Knapp, A. Kendl, A. Koskela and A. Ostermann, Splitting methods for time integration of trajectories in combined electric and magnetic fields. Phys. Rev. E 92 (2015) 063310. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. Kraus, K. Kormann, P. Morrison and E. Sonnendrücker, GEMPIC: geometric electromagnetic particle in cell methods. J. Plasma Phys. 4 (2017) 83. [CrossRef] [Google Scholar]
- W.W. Lee, Gyrokinetic approach in particle simulation. Phys. Fluids 26 (1983) 556–562. [CrossRef] [Google Scholar]
- T. Li and B. Wang, Efficient energy-preserving methods for charged-particle dynamics. Appl. Math. Comput. 361 (2019) 703–714. [MathSciNet] [Google Scholar]
- T.G. Northrop, The adiabatic motion of charged particles, in Interscience Tracts on Physics and Astronomy. Vol. 21. Interscience Publishers John Wiley and Sons New York-London-Sydney (1963). [Google Scholar]
- S. Possanner, Gyrokinetics from variational averaging: existence and error bounds. J. Math. Phys. 59 (2018) 082702. [CrossRef] [MathSciNet] [Google Scholar]
- H. Qin and X. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys. Rev. Lett. 100 (2008) 035006. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun and W. Tang, Why is Boris algorithm so good? Phys. Plasmas 20 (2013) 084503. [CrossRef] [Google Scholar]
- L.F. Ricketson and L. Chacón, An energy-conserving and asymptotic-preserving charged-particle orbit implicit time integrator for arbitrary electromagnetic fields. J. Comput. Phys. 418 (2020) 109639. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis, Applications. Springer, Berlin (2011). [CrossRef] [Google Scholar]
- E. Sonnendrücker, Numerical methods for Vlasov equations. Lecture notes (2016). [Google Scholar]
- M. Tao, Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. J. Comput. Phys. 327 (2016) 245–251. [CrossRef] [MathSciNet] [Google Scholar]
- B. Wang, Exponential energy-preserving methods for charged-particle dynamics in a strong and constant magnetic field. J. Comput. Appl. Math. 387 (2021) 112617. [CrossRef] [Google Scholar]
- B. Wang and X. Zhao, Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field. SIAM J. Numer. Anal. 59 (2021) 2075–2105. [CrossRef] [MathSciNet] [Google Scholar]
- B. Wang and X. Zhao, Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conservations. SIAM J. Numer. Anal. 61 (2023) 1246–1277. [CrossRef] [MathSciNet] [Google Scholar]
- S.D. Webb, Symplectic integration of magnetic systems. J. Comput. Phys. 270 (2014) 570–576. [CrossRef] [MathSciNet] [Google Scholar]
- R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He and J. Xiao, Explicit symplectic algorithms based on generating functions for charged particle dynamics. Phys. Rev. E 94 (2016) 013205. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.