Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2283 - 2300
DOI https://doi.org/10.1051/m2an/2023049
Published online 03 July 2023
  1. V. Anaya, D. Mora, R. Oyarzúa and R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math. 133 (2016) 781–817. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Badia and R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47 (2009) 1971–2000. [Google Scholar]
  3. P.B. Bochev and M.D. Gunzburger, Least-squares finite element methods, in Applied Mathematical Sciences. Vol. 166. Springer, New York (2009). [Google Scholar]
  4. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications, in Springer Series in Computational Mathematics, Vol. 44. Springer, Heidelberg (2013). [Google Scholar]
  5. L. Botti, D.A. Di Pietro and J. Droniou, A hybrid high-order discretisation of the Brinkman problem robust in the Darcy and Stokes limits. Comput. Methods Appl. Mech. Eng. 341 (2018) 278–310. [CrossRef] [Google Scholar]
  6. E. Burman and P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198 (2007) 35–51. [Google Scholar]
  7. E. Cáceres, G.N. Gatica and F.A. Sequeira, A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27 (2017) 707–743. [CrossRef] [MathSciNet] [Google Scholar]
  8. Z. Cai and B. Chen, Least-squares method for the Oseen equation. Numer. Methods Partial Differ. Equ. 32 (2016) 1289–1303. [Google Scholar]
  9. Z. Cai, B. Lee and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. [Google Scholar]
  10. G. Danisch and G. Starke, First-order system least-squares for Darcy-Stokes flow. SIAM J. Numer. Anal. 45 (2007) 731–745. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.F. Gatica and F.A. Sequeira, A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75 (2018) 1191–1212. [CrossRef] [MathSciNet] [Google Scholar]
  12. G.N. Gatica, L.F. Gatica and A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126 (2014) 635–677. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.N. Gatica, L.F. Gatica and F.A. Sequeira, Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow. Comput. Methods Appl. Mech. Eng. 289 (2015) 104–130. [CrossRef] [Google Scholar]
  14. J. Guzmán and M. Neilan, A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32 (2012) 1484–1508. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Hannukainen, M. Juntunen and R. Stenberg, Computations with finite element methods for the Brinkman problem. Comput. Geosci. 15 (2013) 155–166. [Google Scholar]
  16. M. Juntunen and R. Stenberg, Analysis of finite element methods for the Brinkman problem. Calcolo 47 (2010) 129–147. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Könnö and R. Stenberg, H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21 (2011) 2227–2248. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Könnö and R. Stenberg, Numerical computations with H(div)-finite elements for the Brinkman problem. Comput. Geosci. 16 (2012) 139–158. [CrossRef] [MathSciNet] [Google Scholar]
  19. K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Münzenmaier and G. Starke, First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49 (2011) 387–404. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Vacca, An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.S. Vassilevski and U. Villa, A mixed formulation for the Brinkman problem. SIAM J. Numer. Anal. 52 (2014) 258–281. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you