Open Access
Volume 57, Number 5, September-October 2023
Page(s) 3165 - 3200
Published online 10 November 2023
  1. S. Ahn, H. Choi, S.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models. Commun. Math. Sci. 10 (2012) 625–643. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Buttà and C. Marchioro, Cucker-Smale type dynamics of infinitely many individuals with repulsive forces. J. Stat. Phys. 181 (2020) 2094–2108. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.A. Canizo, J.A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21 (2011) 515–539. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.A. Carrillo, M.R. D’Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2 (2009) 363–378. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42 (2010) 218–236. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.A. Carrillo, Y.P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels. ESAIM Proc. Surv. 47 (2014) 17–35. [CrossRef] [EDP Sciences] [Google Scholar]
  7. Z. Chen and X. Yin, The kinetic Cucker-Smale model: well-posedness and asymptotic behavior. SIAM J. Math. Anal. 51 (2019) 3819–3853. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y.P. Choi and X. Zhang, One dimensional singular Cucker-Smale model: uniform-in-time mean-field limit and contractivity. J. Differ. Equ. 287 (2021) 428–459. [CrossRef] [Google Scholar]
  9. Y.P. Choi, D. Kalise, J. Peszek and A.A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control. SIAM J. Appl. Dyn. Syst. 18 (2019) 1954–1981. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Cucker and J.-G. Dong, Avoiding collisions in flocks. IEEE Trans. Autom. Control 55 (2010) 1238–1243. [CrossRef] [Google Scholar]
  11. F. Cucker and S. Smale, On the mathematics of emergence. Jpn. J. Math. 2 (2007) 197–227. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Cucker and S. Smale, Emergent behavior in flocks. IEEE Trans. Autom. Control. 52 (2007) 852–862. [CrossRef] [Google Scholar]
  13. J.-G. Dong, Avoiding collisions and pattern formation in flocks. SIAM J. Appl. Math. 81 (2021) 2111–2129. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7 (2009) 297–325. [CrossRef] [MathSciNet] [Google Scholar]
  15. S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Model. 1 (2008) 415–435. [CrossRef] [Google Scholar]
  16. S.-Y. Ha, J. Kim, X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models. 11 (2018) 1157–1181. [CrossRef] [MathSciNet] [Google Scholar]
  17. S.-Y. Ha, J. Kim, J. Park and X. Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line. Arch. Ration. Mech. Anal. 231 (2019) 319–365. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Jadbabaie, J. Lin and A.S. Morse, Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules”. IEEE Trans. Automat. Control. 48 (2003) 988–1001. [CrossRef] [MathSciNet] [Google Scholar]
  19. T.K. Karper, A. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45 (2013) 215–243. [CrossRef] [MathSciNet] [Google Scholar]
  20. T.K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in Hyperbolic Conservation Laws and Related Analysis with Applications. Springer Proc. Math. Stat. Vol. 49 Springer (2014) 227–242. [CrossRef] [Google Scholar]
  21. J. Kim, First-order reduction and emergent behavior of the one-dimensional kinetic Cucker-Smale equation. J. Differ. Equ. 302 (2021) 496–532. [CrossRef] [Google Scholar]
  22. Z. Li, Effectual leadership in flocks with hierarchy and individual preference. Discrete Contin. Dyn. Syst. 34 (2014) 3683–3702. [CrossRef] [MathSciNet] [Google Scholar]
  23. Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders. Q. Appl. Math. 73 (2015) 693–709. [CrossRef] [MathSciNet] [Google Scholar]
  24. Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies. SIAM J. Appl. Math. 70 (2010) 3156–3174. [CrossRef] [MathSciNet] [Google Scholar]
  25. P.B. Mucha and J. Peszek, The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch. Ration. Mech. Anal. 227 (2018) 273–308. [CrossRef] [MathSciNet] [Google Scholar]
  26. K.K. Oh, M.C. Park and H.S. Ahn, A survey of multi-agent formation control. Autom. J. IFAC 53 (2015) 424–440. [CrossRef] [Google Scholar]
  27. J. Park, J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces. IEEE Trans. Autom. Control 55 (2010) 2617–2623. [CrossRef] [Google Scholar]
  28. J. Peszek, Existence of piecewise weak solutions of a discrete Cucker–Smale’s flocking model with a singular communication weight. J. Differ. Equ. 257 (2014) 2900–2925. [CrossRef] [Google Scholar]
  29. J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight. SIAM J. Math. Anal. 47 (2015) 3671–3686. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Peszek and D. Poyato, Measure solutions to a kinetic Cucker-Smale model with singular and matrix-valued communication. Preprint arXiv:2207.14764 (2022). [Google Scholar]
  31. J. Shen, Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68 (2007) 694–719. [Google Scholar]
  32. C. Villani, Optimal Transport Old and New. Springer-verlag (2009). [CrossRef] [Google Scholar]
  33. X. Wang and X. Xue, The flocking behavior of the infinite-particle Cucker-Smale model. Proc. Amer. Math. Soc. 150 (2022) 2165–2179. [MathSciNet] [Google Scholar]
  34. X. Wang and X. Xue, The collective behavior of the Cucker-Smale model on infinite graphs. Sci. SinMath. (in Chinese) 52 (2022) 1–28. [Google Scholar]
  35. X. Wang and X. Xue, Formation behavior of the kinetic Cucker-Smale model with non-compact support. Proc. R. Soc. Edinburgh Sect. A 153 (2023) 1315–1346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you