Open Access
Volume 57, Number 6, November-December 2023
Page(s) 3201 - 3250
Published online 17 November 2023
  1. K. Bisht, Y. Wang, V. Banerjee and A. Majumdar, Tailored morphologies in two-dimensional ferronematic wells. Phys. Rev. E 101 (2020) 022706. [CrossRef] [PubMed] [Google Scholar]
  2. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics, 3rd edition. Vol. 15, Springer, New York (2008). [Google Scholar]
  3. S.C. Brenner, L. Owens and L.Y. Sung, A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30 (2008) 107–127. [MathSciNet] [Google Scholar]
  4. S.C. Brenner, T. Gudi and L.Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method. J. Sci. Comput. 40 (2009) 37–50. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Canevari, J. Harris, A. Majumdar and Y. Wang, The well order reconstruction solution for three dimensional wells in the Landau-de Gennes theory. Int. J. Non-Linear Mech. 119 (2020) 103342. [CrossRef] [Google Scholar]
  6. C. Carstensen and N. Nataraj, Lowest-order equivalent nonstandard finite element methods for biharmonic plates. ESAIM: M2AN 56 (2022) 41–78. [CrossRef] [EDP Sciences] [Google Scholar]
  7. C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. [Google Scholar]
  8. C. Carstensen, G.C. Remesan, N. Nataraj and D. Shylaja, Unified a priori analysis of second-order FEM for fourth-order semilinear problems with trilinear nonlinearity. Preprint arXiv:2305.06171 (2023). [Google Scholar]
  9. M. Crouzeix and P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Inf. Recherche Opér. Sér. 7 (Rouge 1973,) 33–75. [Google Scholar]
  10. D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, in Mathématiques & Applications (Berlin) [Mathematics & Applications]. Vol. 69. Springer, Heidelberg (2012). [Google Scholar]
  11. L.C. Evans, Partial differential equations, in Graduate Studies in Mathematics, 2nd edition. Vol. 19. American Mathematical Society, Providence, RI (2010) [CrossRef] [Google Scholar]
  12. T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010) 2169–2189. [Google Scholar]
  13. Y. Han, J. Harris, J. Walton and A. Majumdar, Tailored nematic and magnetization profiles on two-dimensional polygons. Phys. Rev. E 103 (2021) 052702. [CrossRef] [PubMed] [Google Scholar]
  14. Y. Han, J. Harris, A. Majumdar and L. Zhang, Elastic anisotropy in the reduced Landau–de Gennes model. Proc. A. 478 (2022) 22. [Google Scholar]
  15. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [Google Scholar]
  16. L.V. Kantorovič, Functional analysis and applied mathematics. Vestnik Leningrad. Univ. 3 (1948) 3–18. [MathSciNet] [Google Scholar]
  17. O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [Google Scholar]
  18. S. Kesavan, Topics in Functional Analysis and Applications. John Wiley & Sons Inc, New York (1989). [Google Scholar]
  19. K.Y. Kim, A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76 (2007) 43–66. [CrossRef] [Google Scholar]
  20. C. Kreuzer, R. Verfürth and P. Zanotti, Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators. Comput. Methods Appl. Math. 21 (2021) 423–443. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces, Technical Report 03/10. Oxford University Computing Laboratory, Oxford, England (2003). [Google Scholar]
  22. C. Luo, A. Majumdar and R. Erban, Multistability in planar liquid crystal wells. Phys. Rev. E 85 (2012) 061702. [CrossRef] [PubMed] [Google Scholar]
  23. R.R. Maity, A. Majumdar and N. Nataraj, Discontinuous Galerkin finite element methods for the Landau-de Gennes minimization problem of liquid crystals. IMA J. Numer. Anal. 41 (2021) 1130–1163. [CrossRef] [MathSciNet] [Google Scholar]
  24. R.R. Maity, A. Majumdar and N. Nataraj, Error analysis of Nitsche’s and discontinuous Galerkin methods of a reduced Landau–de Gennes problem. Comput. Methods Appl. Math. 21 (2021) 179–209. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.R. Maity, A. Majumdar and N. Nataraj, Parameter dependent finite element analysis for ferronematics solutions. Comput. Math. Appl. 103 (2021) 127–155. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21 (2010) 181–203. [CrossRef] [Google Scholar]
  27. A. Mertelj, N. Osterman, D. Lisjak and M. Copic, Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter 10 (2014) 9065–9072. [CrossRef] [PubMed] [Google Scholar]
  28. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  29. L. Owens, Quasi-optimal convergence rate of an adaptive weakly over-penalized interior penalty method. J. Sci. Comput. 59 (2014) 309–333. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Prudhomme, F. Pascal and J.T. Oden, Review of error estimation for discontinuous Galerkin method, TICAM-report 00–27. The university of Texas at Austin (2000). [Google Scholar]
  31. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  32. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. [Google Scholar]
  33. R. Verfürth, A posteriori error estimation techniques for finite element methods, in Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). [Google Scholar]
  34. E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, translated from German by P.R. Wadsack. Springer-Verlag, New York (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you