Open Access
Volume 57, Number 6, November-December 2023
Page(s) 3373 - 3402
Published online 29 November 2023
  1. S. Adams and B. Cockburn, A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25 (2005) 515–521. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.N. Arnold and K. Hu, Complexes from complexes. Found. Comput. Math. 21 (2021) 1739–1774. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements. Adv. Comput. Methods Part. Differ. Equ. 7 (1992) 28–34. [Google Scholar]
  4. D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. [Google Scholar]
  5. D.N. Arnold, J. Douglas and C.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  6. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. [Google Scholar]
  7. D.N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229–1251. [Google Scholar]
  8. D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk, M. Fortin and R.S. Falk, Finite element methods for linear elasticity, in Mixed Finite Elements, Compatibility Conditions, and Applications: Lectures given at the CIME Summer School held in Cetraro, Italy June 26–July 1, 2006. (2008) 159–194. [Google Scholar]
  9. F. Bonizzoni, K. Hu, G. Kanschat and D. Sap, Discrete tensor product BGG sequences: splines and finite elements. Preprint arXiv:2302.02434 (2023). [Google Scholar]
  10. A. Čap, J. Slovák and V. Souček, Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154 (2001) 97–113. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Chen and X. Huang, Complexes from complexes: finite element complexes in three dimensions. Preprint arXiv:2211.08656 (2022). [Google Scholar]
  12. L. Chen and X. Huang, A finite element elasticity complex in three dimensions. Math. Comput. 91 (2022) 2095–2127. [CrossRef] [Google Scholar]
  13. S.H. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and stokes’ problem. Numer. Math. 140 (2018) 327–371. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.H. Christiansen and K. Hu, Finite element systems for vector bundles: elasticity and curvature. Found. Comput. Math. 23 (2022) 545–596. [Google Scholar]
  15. S.H. Christiansen, J. Gopalakrishnan, J. Guzmán and K. Hu, A discrete elasticity complex on three-dimensional Alfeld splits. Preprint arXiv:2009.07744 (2020). [Google Scholar]
  16. R.W. Clough, Finite element stiffness matricess for analysis of plate bending, in Proc. of the First Conf. on Matrix Methods in Struct. Mech. (1965) 515–546. [Google Scholar]
  17. F. Dassi, C. Lovadina and M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems. Comput. Methods Appl. Mech. Eng. 364 (2020) 112910. [CrossRef] [Google Scholar]
  18. M. Eastwood, A complex from linear elasticity, in Proceedings of the 19th Winter School “Geometry and Physics”, Circolo Matematico di Palermo (2000) 23–29. [Google Scholar]
  19. G. Fu, J. Guzmán and M. Neilan, Exact smooth piecewise polynomial sequences on Alfeld splits. Math. Comp. 89 (2020) 1059–1091. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Gong, S. Wu and J. Xu, New hybridized mixed methods for linear elasticity and optimal multilevel solvers. Numer. Math. 141 (2019) 569–604. [Google Scholar]
  21. J. Guzmán and M. Neilan, Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions. Numer. Math. 126 (2014) 153–171. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Guzmán, A. Lischke and M. Neilan, Exact sequences on Powell-Sabin splits. Calcolo 57 (2020) 1–25. [CrossRef] [Google Scholar]
  23. J. Guzmán, A. Lischke and M. Neilan, Exact sequences on Worsey-Farin splits. Math. Comp. 91 (2022) 2571–2608. [MathSciNet] [Google Scholar]
  24. J. Hu and S. Zhang, A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. Chin. Math. 58 (2015) 297–307. [CrossRef] [Google Scholar]
  25. C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30 (1978) 103–116. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.-J. Lai and L.L. Schumaker, Spline Functions on Triangulations. Vol. 110. Cambridge University Press (2007). [CrossRef] [Google Scholar]
  27. A. Lischke, Exact smooth piecewise polynomials on Powell–Sabin and Worsey–Farin splits. Ph.D. thesis, Division of Applied Mathematics, Brown University (2020). [Google Scholar]
  28. MFO, Oberwolfach Reports, no. MFO Workshop 2225. Workshop on “Hilbert Complexes: Analysis, Applications, and Discretizations” held 19 June–25 June 2022. (2022). DOI: 10.14760/OWR-2022-29 [Google Scholar]
  29. J.-C. Nédélec, Mixed finite elements in r3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Worsey and G. Farin, An n-dimensional Clough-Tocher interpolant. Constructive Approximation 3 (1987) 99–110. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you