Open Access
Issue
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
Page(s) 393 - 420
DOI https://doi.org/10.1051/m2an/2023092
Published online 28 February 2024
  1. P.R.S. Antunes and B. Bogosel, Parametric shape optimization using the support function. Comput. Optim. Appl. 82 (2022) 107–138. [CrossRef] [MathSciNet] [Google Scholar]
  2. W. Blaschke, Eine Frage über konvexe Körper. Jahresber. Deutsch. Math. Ver. 25 (1916) 121–125. [Google Scholar]
  3. B. Bogosel, Numerical shape optimization among convex sets. Appl. Math. Optim. 87 (2023) 1. [CrossRef] [Google Scholar]
  4. B. Bogosel, G. Buttazzo and E. Oudet, Computing Blaschke Santalo Diagrams using Centroidal Voronoi Tessellations. Github repository: https://github.com/bbogo/BlaschkeSantalo. [Google Scholar]
  5. D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536. [Google Scholar]
  6. R.H. Byrd, J. Nocedal and R.A. Waltz, KNITRO: An integrated package for nonlinear optimization. In Large-scale nonlinear optimization. Springer (2006) 35–59. [CrossRef] [Google Scholar]
  7. A. Delyon, A. Henrot and Y. Privat, The missing (A, D, r) diagram. Ann. Inst. Fourier (Grenoble) 72 (2022) 1941–1992. [CrossRef] [MathSciNet] [Google Scholar]
  8. Q. Du and M. Emelianenko, Acceleration schemes for computing centroidal Voronoi tessellations. Numer. Linear Algebra Appl. 13 (2006) 173–192. [CrossRef] [MathSciNet] [Google Scholar]
  9. Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 41 (1999) 637–676. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Emelianenko, L. Ju and A. Rand, Nondegeneracy and weak global convergence of the Lloyd algorithm in ℝd. SIAM J. Numer. Anal. 46 (2008) 1423–1441. [CrossRef] [MathSciNet] [Google Scholar]
  11. I. Ftouhi, On the Cheeger inequality for convex sets. J. Math. Anal. Appl. 504 (2021) 26. [Google Scholar]
  12. I. Ftouhi, On a Pólya’s inequality for planar convex sets. C. R. Math. Acad. Sci. Paris 360 (2022) 241–246. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Ftouhi, Optimal description of Blaschke–Santaló diagrams via numerical shape optimization. Preprint arXiv:hal.science/hal-03646758 (2022). [Google Scholar]
  14. I. Ftouhi and J. Lamboley, Blaschke–Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue. SIAM J. Math. Anal. 53 (2021) 1670–1710. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Gastaldello, A. Henrot and I. Lucardesi, About the Blaschke–Santaló diagram of area, perimeter, and moment of inertia. Preprint arXiv:2307.11658 (2023). [Google Scholar]
  16. T. Lachand-Robert and E. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu and C. Yang, On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28 (2009) 1–17. [Google Scholar]
  18. S. Lloyd, Least squares quantization in pcm. IEEE Trans. Inform. Theory 28 (1982) 129–137. [CrossRef] [Google Scholar]
  19. I. Lucardesi and D. Zucco, On Blaschke Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Ann. Mat. Pura Appl. 201 (2022) 175–201. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Monge, Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci. (1781) 666–704. [Google Scholar]
  21. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition. Springer (2006). [Google Scholar]
  22. M. Sabin and R. Gray, Global convergence and empirical consistency of the generalized Lloyd algorithm. IEEE Trans. Inform. Theory 32 (1986) 148–155. [CrossRef] [MathSciNet] [Google Scholar]
  23. L.A. Santaló, On complete systems of inequalities between elements of a plane convex figure. Math. Notae 17 (1959/61) 82–104. [MathSciNet] [Google Scholar]
  24. F. Santambrogio, Optimal Transport for Applied Mathematicians. Springer (2015). [CrossRef] [Google Scholar]
  25. R. Soerjadi, On the computation of the moments of a polygon, with some applications. Institutional Repository, Delft University of Technology (1968). Available at https://repository.tudelft.nl. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you