Open Access
Issue
ESAIM: M2AN
Volume 58, Number 2, March-April 2024
Page(s) 793 - 831
DOI https://doi.org/10.1051/m2an/2023105
Published online 24 April 2024
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Vol. 55 of National Bureau of Standards Applied Mathematics Series. US Government Printing Office (1964). [Google Scholar]
  2. F. Alouges and M. Aussal, FEM and BEM simulations with the Gypsilab framework. SMAI J. Comput. Math. 4 (2018) 297–318. [Google Scholar]
  3. F. Alouges and M. Averseng, New preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical results. Numer. Math. 148 (2021) 255–292. [Google Scholar]
  4. F. Alouges, S. Borel and D.P. Levadoux, A stable well-conditioned integral equation for electromagnetism scattering. J. Comput. Appl. Math. 204 (2007) 440–451. [Google Scholar]
  5. X. Antoine and M. Darbas, Generalized combined field integral equations for the iterative solution of the three-dimensional helmholtz equation. ESAIM: Math. Modell. Numer. Anal. 41 (2007) 147–167. [Google Scholar]
  6. M. Averseng, Pseudo-differential analysis of the Helmholtz layer potentials on open curves. Preprint arXiv:1905.13604 (2019). [Google Scholar]
  7. M. Averseng, Square-root preconditioners for the disk screen in Matlab. https://github.com/MartinAverseng/SqPrecondDiskScreen (2022). DOI: 10.5281/zenodo.7991556. [Google Scholar]
  8. M. Averseng, Stability of a weighted L2 projection in weighted Sobolev spaces. C. R. Math. 361 (2023) 757–766. [Google Scholar]
  9. R.E. Bank and T. Dupont, An optimal order process for solving finite element equations. Math. Comput. 36 (1981) 35–51. [Google Scholar]
  10. O.P. Bruno and S.K. Lintner, Second-kind integral solvers for TE and TM problems of diffraction by open arcs. Radio Sci. 47 (2012) 1–13. [Google Scholar]
  11. S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 330 (2000) 617–622. [Google Scholar]
  12. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. SIAM (2013). [Google Scholar]
  13. M. Costabel, M. Dauge and R. Duduchava, Asymptotics Without Logarithmic Terms for Crack Problems. Taylor & Francis (2003). [Google Scholar]
  14. C. Flammer, Spheroidal Wave Functions. Courier Corporation (2014). [Google Scholar]
  15. J. Galkowski, E.H. Muller and E.A. Spence, Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates and iteration counts for the Dirichlet problem. Numer. Math. 142 (2019) 329–357. [Google Scholar]
  16. M.J. Gander, I.G. Graham and E.A. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: What is the largest shift for which wavenumber-independent convergence is guaranteed? Numer. Math. 131 (2015) 567–614. [Google Scholar]
  17. Z. Gimbutas and L. Greengard, Computational software: simple fmm libraries for electrostatics, slow viscous flow, and frequency-domain wave propagation. Commun. Comput. Phys. 18 (2015) 516–528. [Google Scholar]
  18. H. Gimperlein, J. Stocek and C. Urzúa-Torres, Optimal operator preconditioning for pseudodifferential boundary problems. Numer. Math. 148 (2021) 1–41. [Google Scholar]
  19. I.G. Graham and W. McLean, Anisotropic mesh refinement: the conditioning of Galerkin boundary element matrices and simple preconditioners. SIAM J. Numer. Anal. 44 (2006) 1487–1513. [Google Scholar]
  20. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. [Google Scholar]
  21. W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices. Computing 62 (1999) 89–108. [Google Scholar]
  22. N. Hale, N.J. Higham and L.N. Trefethen, Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46 (2008) 2505–2523. [Google Scholar]
  23. R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699–706. [Google Scholar]
  24. R. Hiptmair, C. Jerez-Hanckes and C. Urzúa-Torres, Mesh-independent operator preconditioning for boundary elements on open curves. SIAM J. Numer. Anal. 52 (2014) 2295–2314. [Google Scholar]
  25. R. Hiptmair, C. Jerez-Hanckes and C. Urzúa-Torres, Closed-form inverses of the weakly singular and hypersingular operators on disks. Integral Equ.Oper. Theory 90 (2018) 1–14. [Google Scholar]
  26. R. Hiptmair, C. Jerez-Hanckes and C. Urzúa-Torres, Optimal operator preconditioning for Galerkin boundary element methods on 3-dimensional screens. SIAM J. Numer. Anal. 58 (2020) 834–857. [Google Scholar]
  27. H. Holm, M. Maischak and E.P. Stephan, The hp-version of the boundary element method for Helmholtz screen problems. Computing 57 (1996) 105–134. [Google Scholar]
  28. R. Hurri, The weighted Poincaré inequalities. Math. Scand. 67 (1990) 145–160. [Google Scholar]
  29. D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (1983) 607–611. [MathSciNet] [Google Scholar]
  30. Y.Y. Lu, A Padé approximation method for square roots of symmetric positive definite matrices. SIAM J. Matrix Anal. App. 19 (1998) 833–845. [Google Scholar]
  31. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  32. F.A. Milinazzo, C.A. Zala and G.H. Brooke, Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Amer. 101 (1997) 760–766. [Google Scholar]
  33. N.M. Nachtigal, S.C. Reddy and L.N. Trefethen, How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. App. 13 (1992) 778–795. [Google Scholar]
  34. J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Vol. 144 of Applied Mathematical Sciences. Springer-Verlag, New York (2001). [Google Scholar]
  35. C. Pechstein and R. Scheichl, Weighted Poincaré inequalities. IMA J. Numer. Anal. 33 (2013) 652–686. [Google Scholar]
  36. P. Ramaciotti, Theoretical and numerical aspects of wave propagation phenomena in complex domains and applications to remote sensing. Ph.D. thesis, Université Paris-Saclay (ComUE) (2016). [Google Scholar]
  37. P. Ramaciotti and J.-C. Nédélec, About some boundary integral operators on the unit disk related to the Laplace equation. SIAM J. Numer. Anal. 55 (2017) 1892–1914. [Google Scholar]
  38. V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmonic Anal. 1 (1993) 82–93. [Google Scholar]
  39. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [Google Scholar]
  40. S.A. Sauter and C. Schwab, Boundary Element Methods. Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011). [Google Scholar]
  41. O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191–216. [Google Scholar]
  42. E.P. Stephan, Boundary integral equations for screen problems in R3. Integral Equ. Oper. Theory 10 (1987) 236–257. [Google Scholar]
  43. E.P. Stephan, The hp boundary element method for solving 2-and 3-dimensional problems. Comput. Methods Appl. Mech. Eng. 133 (1996) 183–208. [Google Scholar]
  44. A. Veeser, Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16 (2016) 723–750. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you