Open Access
Volume 58, Number 2, March-April 2024
Page(s) 489 - 513
Published online 04 April 2024
  1. C. Amrouche, P.G. Ciarlet and C. Mardare, On a lemma of Jacques-Louis Lions and its relation to other fundamental results. J. Math. Pures Appl. 104 (2015) 207–226. [Google Scholar]
  2. C. Amrouche, L.C. Berselli, R. Lewandowski and D.D. Nguyen, Turbulent flows as generalized Kelvin-Voigt materials: modeling and analysis. Nonlinear Anal. 196 (2020) 111790. [Google Scholar]
  3. L.C. Berselli and D. Breit, On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations. J. Math. Anal. App. 501 (2021) 124633. [Google Scholar]
  4. L.C. Berselli, A. Kaltenbach, R. Lewandowski and M. R∘užička, On the existence of weak solutions for a family of unsteady rotational smagorinsky models. To appear in Pure Appl. Funct. Anal. arXiv:2107.00236 (2023). [Google Scholar]
  5. J.W. Deardorff, Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29 (1972) 91–115. [Google Scholar]
  6. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Vol. 219 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York (1976). Translated from the French by C. W. John. [Google Scholar]
  7. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  8. A. Kufner, Weighted Sobolev Spaces. Vol. 31 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980). With German, French and Russian summaries. [Google Scholar]
  9. F. Legeais and R. Lewandowski, Continuous boundary condition at the interface for two coupled fluids. Appl. Math. Lett. 135 (2023) 108393. [Google Scholar]
  10. R. Lewandowski, Analyse mathématique et océanographie. Vol. 39 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1997). [Google Scholar]
  11. R. Lewandowski and G. Pichot, Numerical simulation of water flow around a rigid fishing net. Comput. Methods Appl. Mech. Eng. 196 (2007) 4737–4754. [Google Scholar]
  12. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). Translated from the French by P. Kenneth. [Google Scholar]
  13. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon Turbulence Model. RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994). [Google Scholar]
  14. A.S. Monin and A.M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk. SSSR Geophiz. Inst. 24 (1954) 163–187. [Google Scholar]
  15. A.M. Obukhov, Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol. 2 (1971) 7–29. [Google Scholar]
  16. C. Pelletier, Mathematical study of the air-sea coupling problem including turbulent scale effects. Thesis, University of Grenoble, France, UCLouvain, Louvain-la-Neuve, Belgium (2018). [Google Scholar]
  17. B. Pinier, E. Mémin, S. Laizet and R. Lewandowski, Stochastic flow approach to model the mean velocity profile of wall-bounded flows. Phys. Rev. E 99 (2019) 063101. [Google Scholar]
  18. B. Pinier, R. Lewandowski, E. Mémin and P. Chandramouli, Testing a one-closure equation turbulence model in neutral boundary layers. Comput. Methods Appl. Mech. Eng. 376 (2021) 113662. [Google Scholar]
  19. L. Prandtl, Motion of fluids with very little viscosity, in Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg 1904, p.484, edited by A. Krazer. Teubner, Leipzig, Germany (1905). [Google Scholar]
  20. J. Rappaz and J. Rochat, On non-linear Stokes problems with viscosity depending on the distance to the wall. C. R. Math. Acad. Sci. Paris 354 (2016) 499–502. [Google Scholar]
  21. J. Rappaz and J. Rochat, On some weighted Stokes problems: applications on Smagorinsky models, in Contributions to Partial Differential Equations and Applications. Vol. 47 of Comput. Methods Appl. Sci. Springer, Cham (2019) 395–410. [Google Scholar]
  22. J. Rappaz and J. Rochat, On von Karman modeling for turbulent flow near a wall. Methods Appl. Anal. 26 (2019) 291–295. [Google Scholar]
  23. T.C. Rebollo and R. Lewandowski, A variational finite element model for large-eddy simulations of turbulent flows. Chinese Ann. Math. Ser. B 34 (2013) 667–682. [Google Scholar]
  24. T.C. Rebollo and R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkh¨auser/Springer, New York (2014). [Google Scholar]
  25. H. Schlichting, Boundary Layer Theory. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill Book Co., Inc., New York (1979). [Google Scholar]
  26. T. von Kármán, Mechanische Ähnlichkeit und turbulenz. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse. 58 (1930) 271–286. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you