Open Access
Issue
ESAIM: M2AN
Volume 58, Number 2, March-April 2024
Page(s) 421 - 455
DOI https://doi.org/10.1051/m2an/2024008
Published online 04 April 2024
  1. G. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. [Google Scholar]
  2. G. Akrivis and S. Larsson, Linearly implicit finite element methods for the time-dependent Joule heating problem. BIT Numer. Math. 45 (2005) 429–442. [Google Scholar]
  3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521–541. [Google Scholar]
  4. W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear schrödinger equation with wave operator. SIAM J. Numer. Anal. 50 (2012) 492–521. [Google Scholar]
  5. J. Becker, A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38 (1998) 644–662. [Google Scholar]
  6. Y. Chen, Y. Huang and D. Yu, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Meth. Eng. 57 (2003) 193–209. [Google Scholar]
  7. C. Chen, K. Li, Y. Chen and Y. Huang, Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45 (2019) 611–630. [Google Scholar]
  8. W. Chen, X. Wang, Y. Yan and Z. Zhang, A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57 (2019) 495–525. [Google Scholar]
  9. C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35 (1998) 435–452. [Google Scholar]
  10. J. de Frutos and J. Novo, A posteriori error estimation with the p-version of the finite element method for nonlinear parabolic differential equations. Comput. Methods Appl. Mech. Eng. 191 (2002) 4893–4904. [Google Scholar]
  11. Y. Di, Y. Wei, J. Zhang and C. Zhao, Sharp error estimate of an implicit BDF2 scheme with variable time steps for the phase field crystal model. J. Sci. Comput. 92 (2022) 65. [Google Scholar]
  12. Y. Di, Y. Ma, J. Shen and J. Zhang, A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier-Stokes equations. ESAIM: M2AN 57 (2023) 1143–1170. [Google Scholar]
  13. Y. Du, Y. Liu, H. Li, Z. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344 (2017) 108–126. [Google Scholar]
  14. F. Durango and J. Novo, Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton-type step. J. Sci. Comput. 74 (2018) 456–473. [Google Scholar]
  15. C. Gear and K. Tu, The effect of variable mesh size on the stability of multistep methods. SIAM J. Numer. Anal. 11 (1974) 1025–1043. [Google Scholar]
  16. D. Hou and Z. Qiao, An implicit-explicit second-order BDF numerical scheme with variable steps for gradient flows. J. Sci. Comput. 94 (2023) 39. [Google Scholar]
  17. T. Hou, T. Tang and J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72 (2017) 1214–1231. [Google Scholar]
  18. T. Hou, W. Jiang, X. Yang and H. Leng, Two-grid P21P1 mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations. Appl. Numer. Math. 137 (2019) 136–150. [Google Scholar]
  19. D. Hou, L. Ju and Z. Qiao, A linear second-order maximum bound principle-preserving BDF scheme for the Allen–Cahn equation with a general mobility. Math. Comput. 92 (2023) 2515–2542. [Google Scholar]
  20. J. Huang, C. Yang and Y. Wei, Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42 (2020) C294–C312. [Google Scholar]
  21. B. Li and W. Sun, Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Mod. 10 (2013) 622–633. [Google Scholar]
  22. X. Li and H. Rui, A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72 (2017) 863–891. [Google Scholar]
  23. X. Li, J. Shen and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math. Comput. 88 (2019) 2047–2068. [Google Scholar]
  24. B. Li, Y. Ueda and G. Zhou, A second-order stabilization method for linearizing and decoupling nonlinear parabolic systems. SIAM J. Numer. Anal. 58 (2020) 2736–2763. [Google Scholar]
  25. X. Li, Y. Chen and C. Chen, An improved two-grid technique for the nonlinear time-fractional parabolic equation based on the block-centered finite difference method. J. Comput. Math. 40 (2021) 455–473. [Google Scholar]
  26. D. Li, X. Li, M. Mei and W. Yuan, A structure-preserving and variable-step BDF2 Fourier pseudo-spectral method for the two-mode phase field crystal model. Math. Comput. Simulat. 205 (2023) 483–506. [Google Scholar]
  27. M. Li, L. Wang and N. Wang, Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations. Appl. Numer. Math. 186 (2023) 378–410. [Google Scholar]
  28. H. Liao and Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput. 90 (2021) 1207–1226. [Google Scholar]
  29. H. Liao, Z. Sun and H. Shi, Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer. Anal. 47 (2010) 4381–4401. [Google Scholar]
  30. H. Liao, T. Tang and T. Zhou, On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58 (2020) 2294–2314. [Google Scholar]
  31. H. Liao, X. Song, T. Tang and T. Zhou, Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China. Math. 63 (2021) 887–902. [Google Scholar]
  32. H. Liao, B. Ji, L. Wang and Z. Zhang, Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn–Hilliard model. J. Sci. Comput. 92 (2022) 52. [Google Scholar]
  33. H. Liao, B. Ji and L. Zhang, An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42 (2022) 649–679. [Google Scholar]
  34. W. Liu and J. Cui, A two-grid block-centered finite difference algorithm for nonlinear compressible Darcy-Forchheimer model in porous media. J. Sci. Comput. 74 (2018) 1786–1815. [Google Scholar]
  35. Q. Liu, J. Jing, M. Yuan and W. Chen, A positivity-preserving, energy stable BDF2 scheme with variable steps for the Cahn–Hilliard equation with logarithmic potential. J. Sci. Comput. 95 (2023) 37. [Google Scholar]
  36. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170–1184. [Google Scholar]
  37. Z. Qiao, Z. Zhang and T. Tang, An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33 (2011) 1395–1414. [Google Scholar]
  38. A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics. Springer (2007). [Google Scholar]
  39. H. Rui and W. Liu, A two-grid block-centered finite difference method for Darcy-Forchheimer flow in porous media. SIAM J. Numer. Anal. 53 (2015) 1941–1962. [Google Scholar]
  40. L. Shampine and M. Reichelt, The MATLAB ODE suite. SIAM J. Sci. Comput. 18 (1997) 1–22. [Google Scholar]
  41. J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61 (2019) 474–506. [Google Scholar]
  42. H. Sun, X. Zhao, H. Cao, R. Yang and M. Zhang, Stability and convergence analysis of adaptive BDF2 scheme for the Swift-Hohenberg equation. Commun. Nonlinear. Sci. 111 (2022) 106412. [Google Scholar]
  43. H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46 (2008) 2133–2152. [Google Scholar]
  44. N. Wang and M. Li, Unconditional error analysis of a linearized BDF2 virtual element method for nonlinear Ginzburg-Landau equation with variable time step. Commun. Nonlinear. Sci. 116 (2023) 106889. [Google Scholar]
  45. W. Wang, Y. Chen and H. Fang, On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57 (2019) 1289–1317. [Google Scholar]
  46. Y. Wang, Y. Chen, Y. Huang and H. Yi, A family of two-grid partially penalized immersed finite element methods for semilinear parabolic interface problems. J. Sci. Comput. 88 (2021) 80. [Google Scholar]
  47. S. Xie, S. Yi and T. Kwon, Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. Comput. Phys. Commun. 183 (2012) 552–569. [Google Scholar]
  48. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996) 1759–1777. [Google Scholar]
  49. J. Xu, S. Xie and H. Fu, A two-grid block-centered finite difference method for the nonlinear regularized long wave equation. Appl. Numer. Math. 172 (2022) 128–148. [Google Scholar]
  50. J. Zhang and H. Rui, Numerical analysis of two-grid block-centered finite difference method for two-phase flow in porous medium. Adv. Appl. Math. Mech. 14 (2022) 1433–1455. [Google Scholar]
  51. X. Zhao, Z. Sun and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36 (2014) A2865–A2886. [Google Scholar]
  52. C. Zhao, N. Liu, Y. Ma and J. Zhang, Unconditionally optimal error estimate of a linearized variable-time-step BDF2 scheme for nonlinear parabolic equations. Commun. Math. Sci. 21 (2023) 775–794. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you