Open Access
Volume 58, Number 3, May-June 2024
Page(s) 927 - 955
Published online 06 June 2024
  1. W. Arendt and S. Bu, Fourier series in banach spaces and maximal regularity. In: Vector Measures, Integration and Related Topics. Birkh¨auser, Basel (2009) 21–39. [Google Scholar]
  2. K.J. Bathe and C.A. Almeida, A simple and effective pipe elbow element—linear analysis. J. Appl. Mech. 47 (1980) 93–100. [Google Scholar]
  3. K.J. Bathe and C.A. Almeida, A simple and effective pipe elbow element—interaction effects. J. Appl. Mech. 49 (1982) 165–171. [Google Scholar]
  4. K.-J. Bathe, C.A. Almeida and L.W. Ho, A simple and effective pipe elbow element—some nonlinear capabilities. In: Nonlinear Finite Element Analysis and Adina. Elsevier (1983) 659–667. [Google Scholar]
  5. D. Chapelle and K.-J. Bathe, The Finite Element Analysis of Shells - Fundamentals. Springer, Berlin, Heidelberg (2011). [Google Scholar]
  6. P.G. Ciarlet, Theory of shells: Volume 3. Studies in mathematics and its applications. North-Holland, Oxford, England (2000). [Google Scholar]
  7. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics (2002). [Google Scholar]
  8. C. Farhat and F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32 (1991) 1205–1227. [Google Scholar]
  9. L. Grafakos, Classical Fourier Analysis. Springer, New York (2014). [Google Scholar]
  10. S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Springer, US (2000). [Google Scholar]
  11. D. Jackson, A formula of trigonometric interpolation. Rend. Circ. Mat. Palermo 37 (1914) 371–375. [Google Scholar]
  12. Y. Jiang and A. Arabyan, A new pipe element for modeling three-dimensional large deformation problems. Finite Elem. Anal. Des. 22 (1996) 59–68. [Google Scholar]
  13. R. Kreb, On general hermite trigonometric interpolation. Numer. Math. 20 (1972) 125–138. [Google Scholar]
  14. A. Laulusa, O. Bauchau, J.-Y. Choi, V. Tan and L. Li, Evaluation of some shear deformable shell elements. Int. J. Solids Struct. 43 (2006) 5033–5054. [Google Scholar]
  15. C. Militello and A. Huespe, A displacement-based pipe elbow element. Comput. Struct. 29 (1988) 339–343. [Google Scholar]
  16. A. Prakash and K.D. Hjelmstad, A FETI-based multi-time-step coupling method for newmark schemes in structural dynamics. Int. J. Numer. Methods Eng. 61 (2004) 2183–2204. [Google Scholar]
  17. A.M. Yan, R.J. Jospin and D.H. Nguyen, An enhanced pipe elbow element: application in plastic limit analysis of pipe structures. Int. J. Numer. Methods Eng. 46 (1999) 409–431. [Google Scholar]
  18. E. Zafati, Convergence results of a heterogeneous asynchronous newmark time integrators. ESAIM:M2AN (2022). [Google Scholar]
  19. L. Zeng, L.G. Jansson and Y. Venev, On pipe elbow elements in ABAQUS and benchmark tests. In Vol. 3 Design and Analysis. American Society of Mechanical Engineers (2014). [Google Scholar]
  20. W.P. Ziemer, Weakly Differentiable Functions. Springer, New York (1989). [Google Scholar]
  21. A. Zygmund and R. Fefferman, Trigonometric Series. Cambridge University Press (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you