Open Access
Issue
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
Page(s) 1263 - 1299
DOI https://doi.org/10.1051/m2an/2024035
Published online 19 July 2024
  1. A. Arakawa and V.R. Lamb, Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys.: Adv. Res. Appl. 17 (1977) 173–265. [CrossRef] [Google Scholar]
  2. A. Arakawa and V.R. Lamb, A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Weather Rev. 109 (1981) 18–36. [CrossRef] [Google Scholar]
  3. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  4. E. Audusse, F. Bouchut and M.-O. Bristeau, A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311–333. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Audusse, C. Chalons and P. Ung, A simple well-balanced and positive numerical scheme for the shallow-water system. Commun. Math. Sci. 13 (2015) 1317–1332. [Google Scholar]
  6. E. Audusse, F. Bouchut, M.-O. Bristeau and J. Sainte-Marie, Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Math. Comput. 85 (2016) 2815–2837. [Google Scholar]
  7. D. Benson, Computational methods in lagrangian and eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99 (1992) 235–394. [CrossRef] [Google Scholar]
  8. M.V.A. Bermudez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 1049–1071. [CrossRef] [MathSciNet] [Google Scholar]
  9. O. Bernard, M. Bestard, T. Goudon, L. Meyer, S. Minjeaud, F. Noisette and B. Polizzi, Numerical schemes for mixture theory models with filling constraint: application to biofilm ecosystems, Technical report, Univ. Côte d’Azur, CNRS, Inria, 2023. CEMRACS (2022). [Google Scholar]
  10. F. Berthelin, T. Goudon and S. Minjeaud, Consistency analysis of a 1D finite volume scheme for barotropic Euler models. In Finite volumes for complex applications VII. Methods and theoretical aspects, Vol. 77 of Springer Proc. Math. Stat. Springer, Cham (2014) 97–105. [Google Scholar]
  11. F. Berthelin, T. Goudon and S. Minjeaud, Kinetic schemes on staggered grids for barotropic Euler models: entropystability analysis. Math. Comput. 84 (2015) 2221–2262. [CrossRef] [Google Scholar]
  12. F. Berthelin, T. Goudon and S. Minjeaud, Multifluid flows: a kinetic approach. J. Sci. Comput. 66 (2016) 792–824. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Berthon, A. Duran, F. Foucher, K. Saleh and J. de Dieu Zabsonré, Improvement of the hydrostatic reconstruction scheme to get fully discrete entropy inequalities. J. Sci. Comput. 80 (2019) 924–956. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72 (2003) 131–157. [Google Scholar]
  15. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-balanced Schemes for Sources. Frontiers in Mathematics, Birkh¨auser (2004). [CrossRef] [Google Scholar]
  16. CALIF3S, A software components library for the computation of reactive turbulent flows. [Google Scholar]
  17. P. Cargo and A.-Y. LeRoux, Un schéma équilibre adapté au modèle d’atmosphère avec termes de gravité. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 73–76. [MathSciNet] [Google Scholar]
  18. M. Castro, A. Milanes and C. Pares, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17 (2007) 2055–2113. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.J. Castro, A. Pardo, C. Parés and E.F. Toro, On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79 (2010) 1427–1472. [Google Scholar]
  20. F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. [Google Scholar]
  21. C. Dafermos, Hyperbolic conserrvation laws in continuum physics, 3rd edition. In Vol. 325 of Grundlehren der Mathematischen Wissenschaften. Springer, 2010. [CrossRef] [Google Scholar]
  22. G. Dakin, B. Després and S. Jaouen, High-order staggered schemes for compressible hydrodynamics weak consistency and numerical validation. J. Comput. Phys. 376 (2019) 339–364. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Delestre, Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. Ph.D. thesis, Université d’Orléans (2010). [Google Scholar]
  24. O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.-N.-T. Vo, F. James and S. Cordier, SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods in Fluids 72 (2013) 269–300. [CrossRef] [Google Scholar]
  25. S.M. Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows. In: AIAA 24th Aerospace Science Meeting, Jan 6–9, 1986, Nevada, USA. AIAA paper (1986) 86–0275. [Google Scholar]
  26. S.M. Deshpande, On the Maxwellian distribution, symmetric form and entropy conservation for the Euler equations. Technical report, NASA Langley Research Centre, Hampton, VA (1986). NASA TP2613. [Google Scholar]
  27. D. Doyen and P.H. Gunawan, An explicit staggered finite volume scheme for the shallow water equations. In: Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Vol. 77 of Springer Proceedings in Mathematics & Statistics. Springer (2014). [Google Scholar]
  28. T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow water equations with topography. Comput. Fluids 32 (2003) 479–513. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Gallouët, R. Herbin and J.-C. Latché, Lax–wendroff consistency of finite volume schemes for systems of non linear conservation laws: extension to staggered schemes. SeMA 79 (2022) 333–354. [CrossRef] [MathSciNet] [Google Scholar]
  30. L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta and J.-C. Latché, Staggered discretizations, pressure correction schemes and all speed barotropic flows. In Vol. 4 Finite Volumes for Complex Applications VI, Problems and Perspectives, Prague, Czech Republic (2011) 839–855. [Google Scholar]
  31. L. Gastaldo, R. Herbin, J.-C. Latché and N. Therme, A MUSCL-type segregated-explicit staggered scheme for the Euler equations. Comput. Fluids 175 (2018) 91–110. [CrossRef] [MathSciNet] [Google Scholar]
  32. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. In Vol. 118 of Applied Mathematical Sciences. Springer, New-York (1996). [CrossRef] [Google Scholar]
  33. L. Gosse, Computing qualitatively correct approximations of balance laws. In Vol. 2 of SIMAI Springer Series. Spinger (2013). [CrossRef] [Google Scholar]
  34. T. Goudon, J. Llobell and S. Minjeaud, An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes. Numer. Methods PDE 36 (2020) 1098–1128. [CrossRef] [Google Scholar]
  35. T. Goudon, J. Llobell and S. Minjeaud, An explicit MUSCL scheme on staggered grids with kinetic-like fluxes for the barotropic and full Euler system. Commun. Comput. Phys. 27 (2020) 672–724. [CrossRef] [MathSciNet] [Google Scholar]
  36. T. Goudon, J. Llobell and S. Minjeaud, An explicit finite volume scheme on staggered grids for the Euler equations: unstructured meshes, stability analysis, and energy conservation. Int. J. Numer. Methods Fluids 94 (2022) 76–119. [CrossRef] [Google Scholar]
  37. J.M. Greenberg and A.-Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  38. H. Guillard and C. Viozat, On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet] [Google Scholar]
  39. H. Guillard and B. Nkonga, Chapter 8 – on the behaviour of upwind schemes in the low mach number limit: A review. In Vol. 18 of Handbook of Numerical Analysis, edited by R. Abgrall and C.-W. Shu. Handbook of Numerical Methods for Hyperbolic Problems. Elsevier (2017) 203–231. [Google Scholar]
  40. F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182–2189. [CrossRef] [MathSciNet] [Google Scholar]
  41. F.H. Harlow and A.A. Amsden, Numerical calculation of almost incompressible flow. J. Comput. Phys. 3 (1968) 80–93. [CrossRef] [Google Scholar]
  42. F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197–213. [CrossRef] [Google Scholar]
  43. R. Herbin, W. Kheriji and J.-C. Latché, Staggered schemes for all speed flows. ESAIM: Proc. 35 (2012) 122–150. [CrossRef] [EDP Sciences] [Google Scholar]
  44. R. Herbin, J.-C. Latché and T.T. Nguyen, Explicit staggered schemes for the compressible Euler equations. In Applied mathematics in Savoie—AMIS 2012: Multiphase flow in industrial and environmental engineering, Vol. 40 of ESAIM Proc., EDP Sciences (2013) 83–102. [Google Scholar]
  45. R. Herbin, J.-C. Latché and T.T. Nguyen, Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations. ESAIM:M2AN 52 (2018) 893–944. [CrossRef] [EDP Sciences] [Google Scholar]
  46. R. Herbin, J.-C. Latché, S. Minjeaud and N. Therme, Conservativity and weak consistency of a class of staggered finite volume methods for the Euler equations. Math. Comput. 90 (2021) 1155–1177. [Google Scholar]
  47. R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of some staggered schemes for compressible barotropic flows. Math. Comput. 90 (2021) 1039–1087. [CrossRef] [Google Scholar]
  48. D.D. Houghton and A. Kasahara, Nonlinear shallow fluid flow over an isolated ridge. NCAR Manuscript 259a (1967). [Google Scholar]
  49. S. Kaniel and J. Falcovitz, Approximation of the hydrodynamic equations by a transport process, edited by R. Rautman. In: Proceedings of IUTAM Symposium on Approximation Methods for Navier-Stokes Problems, Vol. 771 of Lecture Notes in Math. Springer-Verlag (1980). [Google Scholar]
  50. W. Kheriji, R. Herbin and J.-C. Latché, Pressure correction staggered schemes for barotropic one-phase and two-phase flows. Comput. Fluids 88 (2013) 524–542. [CrossRef] [MathSciNet] [Google Scholar]
  51. C. Klingenberg, G. Puppo and M. Semplice, Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity. SIAM J. Sci. Comput. 41 (2019) A695–A721. [CrossRef] [Google Scholar]
  52. F. Lespagnol and G. Dakin, High order accurate schemes for Euler and Navier-Stokes equations on staggered Cartesian grids. J. Comput. Phys. 410 (2020) 109314. [CrossRef] [MathSciNet] [Google Scholar]
  53. R. LeVeque, Balancing source terms and flux gradients in high-resolution godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346–365. [CrossRef] [MathSciNet] [Google Scholar]
  54. R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). [CrossRef] [Google Scholar]
  55. V. Michel-Dansac, C. Berthon, S. Clain and F. Foucher, A well-balanced scheme for the shallow-water equations with topography. Comput. Math. Appl. 72 (2016) 568–593. [CrossRef] [MathSciNet] [Google Scholar]
  56. B. Perthame, Second order Boltzmann schemes for compressible Euler equations in one and two space dimension. SIAM J. Numer. Anal. 29 (1992) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  57. B. Perthame, Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Math. and its Appl. Oxford University Press (2003). [Google Scholar]
  58. B. Polizzi, O. Bernard and M. Ribot, A time-space model for the growth of microalgae biofilms for biofuel production. J. Theor. Biol. 432 (2017) 55–79. [CrossRef] [Google Scholar]
  59. G. Stelling and S. Duinmeijer, A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43 (2003) 1329–1354. [CrossRef] [Google Scholar]
  60. W.C. Thacker, Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107 (1981) 499–508. [CrossRef] [MathSciNet] [Google Scholar]
  61. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition. Springer-Verlag, Berlin (2009). [Google Scholar]
  62. D.R. van der Heul, C. Vuik and P. Wesseling, A conservative pressure-correction method for flow at all speeds. Comput. Fluids 32 (2003) 1113–1132. [CrossRef] [MathSciNet] [Google Scholar]
  63. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 135 (1997) 227–248. [Google Scholar]
  64. B. van’t Hof and A.E.P. Veldman, Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231 (2012) 4723–4744. [CrossRef] [MathSciNet] [Google Scholar]
  65. J. VonNeumann and R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21 (1950) 232–237. [NASA ADS] [CrossRef] [Google Scholar]
  66. I. Wenneker, A. Segal and P. Wesseling, A Mach-uniform unstructured staggered grid method. Int. J. Numer. Methods Fluids 40 (2002) 1209–1235. [Google Scholar]
  67. I. Wenneker, A. Segal and P. Wesseling, Conservation properties of a new unstructured staggered scheme. Comput. Fluids 32 (2003) 139–147. [CrossRef] [MathSciNet] [Google Scholar]
  68. P. Wesseling, Principles of computational fluid dynamics. In Vol. 29 of Springer Series in Computational Mathematics. Springer (2001). [CrossRef] [Google Scholar]
  69. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you