Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 2035 - 2059 | |
DOI | https://doi.org/10.1051/m2an/2024064 | |
Published online | 21 October 2024 |
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [Google Scholar]
- I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863–875. [CrossRef] [MathSciNet] [Google Scholar]
- C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175 (1999) 311–341. [CrossRef] [Google Scholar]
- J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, edited by J.L. Menaldi, E. Rofman and A. Sulem. In: Optimal Control and Partial Differential Equations: In Honor of Professor Alain Benssoussan’s 60th Birthday. IOS Press (2001) 439–455. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer, New York (2008). [Google Scholar]
- O. Burkovska and M. Gunzburger, Regularity analyses and approximation of nonlocal variational equality and inequality problems. J. Math. Anal. Appl. 478 (2019) 1027–1048. [Google Scholar]
- M.P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37 (2001) 535–549. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77 (2008) 699–730. [Google Scholar]
- X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200 (2011) 1237–1250. [CrossRef] [Google Scholar]
- B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
- B. Cockburn and C.-W. Shu, The Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM:M2AN 25 (1991) 337–361. [CrossRef] [EDP Sciences] [Google Scholar]
- B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, S. Hou and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54 (1990) 545–581. [Google Scholar]
- B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, J. Guzmán, S.-C. Soon and H.K. Stolarski, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 2686–2707. [CrossRef] [MathSciNet] [Google Scholar]
- M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian and Z. Zhou, Numerical methods for nonlocal and fractional models. Acta Numer. 29 (2020) 1–124. [CrossRef] [MathSciNet] [Google Scholar]
- M. D’Elia, C. Flores, X. Li, P. Radu and Y. Yu, Helmholtz–Hodge decompositions in the nonlocal framework: well-posedness analysis and applications. J. Peridyn. Nonlocal Model. 2 (2020) 401–418. [CrossRef] [MathSciNet] [Google Scholar]
- M. D’Elia, X. Li, P. Seleson, X. Tian and Y. Yu, A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. J. Peridyn. Nonlocal Model. 4 (2022) 1–50. [CrossRef] [MathSciNet] [Google Scholar]
- W. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM:M2AN 47 (2013) 1845–1864. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic galerkin methods. In Vol. 58 Lecture Notes in Physics. Springer, Berlin (1976). [Google Scholar]
- Q. Du, Nonlocal modeling, analysis, and computation. In Vol. 94 CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2019). [Google Scholar]
- Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM:M2AN 45 (2011) 217–234. [CrossRef] [EDP Sciences] [Google Scholar]
- Q. Du and J. Yang, Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54 (2016) 1899–1919. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du and X. Tian, Mathematics of smoothed particle hydrodynamics: a study via nonlocal Stokes equations. Found. Comput. Math. 20 (2020) 801–826. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Model. Methods Appl. Sci. 23 (2013) 493–540. [CrossRef] [Google Scholar]
- Q. Du, Z. Huang and R. Lehoucq, Nonlocal convection–diffusion volume-constrained problems and jump processes. Discrete Contin. Dyn. Syst. B 19 (2014) 373–389. [Google Scholar]
- Q. Du, Z. Huang and P.G. LeFloch, Nonlocal conservation laws. A new class of monotonicity-preserving models. SIAM J. Numer. Anal. 55 (2017) 2465–2489. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, J. Zhang and C. Zheng, Nonlocal wave propagation in unbounded multi-scale media. Commun. Comput. Phys. 24 (2018) 1049–1072. [MathSciNet] [Google Scholar]
- Q. Du, X.H. Li, J. Lu and X. Tian, A quasi-nonlocal coupling method for nonlocal and local diffusion models. SIAM J. Numer. Anal. 56 (2018) 1386–1404. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, L. Ju, X. Li and Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57 (2019) 875–898. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, L. Ju and J. Lu, A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88 (2019) 123–147. [Google Scholar]
- Q. Du, L. Ju, J. Lu and X. Tian, A discontinuous Galerkin method with penalty for one-dimensional nonlocal diffusion problems. Commun. Appl. Math. Comput. 2 (2020) 31–55. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Du, X. Tian, C. Wright and Y. Yu, Nonlocal trace spaces and extension results for nonlocal calculus. J. Funct. Anal. 282 (2022) No. 109453. [Google Scholar]
- G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6 (2007) 595–630. [Google Scholar]
- G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2008) 1005–1028. [Google Scholar]
- Q. Guan and M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation. Numer. Method Partial Differ. Equ. 31 (2015) 500–516. [CrossRef] [Google Scholar]
- M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 8 (2010) 1581–1598. [CrossRef] [MathSciNet] [Google Scholar]
- K. Huang and Q. Du, Stability of a nonlocal traffic flow model for connected vehicles. SIAM J. Appl. Math. 82 (2022) 221–243. [CrossRef] [MathSciNet] [Google Scholar]
- H. Liu and J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47 (2008/2009) 675–698. [CrossRef] [Google Scholar]
- T. Mengesha and Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint. Proc. R. Soc. Edinb. Sect. A 144 (2014) 161–186. [CrossRef] [Google Scholar]
- L. Qiu, W. Deng and J.S. Hesthaven, Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes. J. Comput. Phys. 298 (2015) 678–694. [CrossRef] [MathSciNet] [Google Scholar]
- W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory report LA-UR-73-479, NM (1973). [Google Scholar]
- B. Rivière, M. F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3 (1999) 337–360. [CrossRef] [MathSciNet] [Google Scholar]
- C.-W. Shu, Total-variation-diminishing time discretizations. SIAM J. Sci. Statist. Comput. 9 (1988) 1073–1084. [CrossRef] [MathSciNet] [Google Scholar]
- C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
- S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175–209. [Google Scholar]
- S.A. Silling and R.B. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44 (2010) 73–168. [CrossRef] [Google Scholar]
- C.-W. Shu, Discontinuous Galerkin methods: general approach and stability, edited by S. Bertoluzza, S. Falletta, G. Russo and C.-W. Shu. Birkhauser. In: Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics CRM Barcelona, Basel (2009) 149–201. [Google Scholar]
- X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51 (2013) 3458–3482. [Google Scholar]
- X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52 (2014) 1641–1665. [Google Scholar]
- X. Tian and Q. Du, Nonconforming discontinuous Galerkin methods for nonlocal variational problems. SIAM J. Numer. Anal. 53 (2015) 762–781. [CrossRef] [MathSciNet] [Google Scholar]
- X. Tian and Q. Du, Trace theorems for some nonlocal function spaces with heterogeneous localization. SIAM J. Math. Anal. 49 (2017) 1621–1644. [CrossRef] [MathSciNet] [Google Scholar]
- H. Tian, L. Ju and Q. Du, Nonlocal convection–diffusion problems and finite element approximations. Comput. Methods Appl. Mech. Eng. 289 (2015) 60–78. [CrossRef] [Google Scholar]
- X. Tian and Q. Du, Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models. SIAM Rev. 62 (2020) 199–227. [CrossRef] [MathSciNet] [Google Scholar]
- B. van Leer and S. Nomura, Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference (2005) 5108. [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Wang, Q. Tang, W. Guo and Y. Cheng, Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314 (2016) 244–263. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Xu and J.S. Hesthaven, Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52 (2014) 405–423. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.