Open Access
Issue
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
Page(s) 2287 - 2316
DOI https://doi.org/10.1051/m2an/2024039
Published online 04 December 2024
  1. A. Abdulle, A. Barth and C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11 (2013) 1033–1070. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents. Vol. 55. US Government Printing Office, Washington, DC (1964). [Google Scholar]
  3. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142 (1997) 1–88. [CrossRef] [Google Scholar]
  4. A. Alexanderian, A brief note on the Karhunen–Loève expansion. Preprint arXiv:1509.07526 (2015). [Google Scholar]
  5. M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 9–23. [Google Scholar]
  6. A. Barth and A. Stein, A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 1707–1743. [CrossRef] [MathSciNet] [Google Scholar]
  7. C.A. Beschle and A. Barth, Quasi continuous level Monte Carlo for random elliptic PDEs, in Monte Carlo and Quasi-Monte Carlo Methods 2022, edited by A. Hinrichs, P. Kritzer and F. Pillichshammer. Springer Verlag (2023). [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [CrossRef] [Google Scholar]
  9. K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14 (2011) 3–15. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Detommaso, T. Dodwell and R. Scheichl, Continuous level Monte Carlo and sample-adaptive model hierarchies. SIAM/ASA J. Uncertain. Quantif. 7 (2019) 93–116. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Dick and F. Pillichshammer, Discrepancy theory and quasi-Monte Carlo integration, in A Panorama of Discrepancy Theory. Vol. 2107 of Lecture Notes in Math. Springer, Cham (2014) 539–619. [CrossRef] [Google Scholar]
  12. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  13. K.T. Fang, Y. Wang and P.M. Bentler, Some applications of number-theoretic methods in statistics. Statist. Sci. 9 (1994) 416–428. [MathSciNet] [Google Scholar]
  14. J.E. Gentle, Random number generation and Monte Carlo methods, in Statistics and Computing, 2nd edition. Springer, New York (2003). [Google Scholar]
  15. M.B. Giles, Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008) 607–617. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.B. Giles, Multilevel Monte Carlo methods. Acta Numer. 24 (2015) 259–328. [CrossRef] [MathSciNet] [Google Scholar]
  17. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230 (2011) 3668–3694. [CrossRef] [MathSciNet] [Google Scholar]
  18. I.G. Graham, F.Y. Kuo, J.A. Nichols, R. Scheichl, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Gr¨atsch and K.-J. Bathe, A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83 (2005) 235–265. [CrossRef] [Google Scholar]
  20. W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, 2nd edition. Vol. 18 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2017). [CrossRef] [Google Scholar]
  21. A.-L. Haji-Ali, F. Nobile and R. Tempone, Multi-index Monte Carlo: when sparsity meets sampling. Numer. Math. 132 (2016) 767–806. [CrossRef] [MathSciNet] [Google Scholar]
  22. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T.E. Oliphant, Array programming with NumPy. Nature 585 (Sept. 2020) 357–362. [NASA ADS] [CrossRef] [Google Scholar]
  23. S. Heinrich, Multilevel monte carlo methods, in Large-Scale Scientific Computing. Springer Berlin Heidelberg, Berlin, Heidelberg (2001) 58–67. [CrossRef] [Google Scholar]
  24. P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Vol. 44 of Texts in Applied Mathematics. Springer-Verlag, New York (2003). [Google Scholar]
  25. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1974). [Google Scholar]
  26. F.Y. Kuo, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 3351–3374. [CrossRef] [MathSciNet] [Google Scholar]
  27. F.Y. Kuo, C. Schwab and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15 (2015) 411–449. [CrossRef] [MathSciNet] [Google Scholar]
  28. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. Vol. 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). [Google Scholar]
  29. A.B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas, NV, 1994). Vol. 106 of Lect. Notes Stat. Springer, New York (1995) 299–317. [CrossRef] [Google Scholar]
  30. A.B. Owen, Scrambling Sobol’ and Niederreiter-Xing points. J. Complexity 14 (1998) 466–489. [CrossRef] [MathSciNet] [Google Scholar]
  31. B. Peherstorfer, K. Willcox and M. Gunzburger, Optimal model management for multifidelity Monte Carlo estimation. SIAM J. Sci. Comput. 38 (2016) A3163–A3194. [CrossRef] [Google Scholar]
  32. C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006). [Google Scholar]
  33. C.-H. Rhee and P.W. Glynn, Unbiased estimation with square root convergence for SDE models. Oper. Res. 63 (2015) 1026–1043. [CrossRef] [MathSciNet] [Google Scholar]
  34. I.M. Sobol, Distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat i Mat. Fiz. 7 (1967) 784–802. [MathSciNet] [Google Scholar]
  35. A.L. Teckentrup, R. Scheichl, M.B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125 (2013) 569–600. [CrossRef] [MathSciNet] [Google Scholar]
  36. M. Vihola, Unbiased estimators and multilevel Monte Carlo. Oper. Res. 66 (2018) 448–462. [CrossRef] [MathSciNet] [Google Scholar]
  37. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17 (2020) 261–272. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you