Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
|
|
---|---|---|
Page(s) | 2225 - 2254 | |
DOI | https://doi.org/10.1051/m2an/2024030 | |
Published online | 04 December 2024 |
- A. Abdulle, Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23 (2002) 2041–2054. [CrossRef] [MathSciNet] [Google Scholar]
- A. Abdulle, Explicit stabilized Runge–Kutta methods, in Encyclopedia of Applied and Computational Mathematics. Springer (2015) 460–468. [Google Scholar]
- A. Abdulle and A.A. Medovikov, Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 18 (2001) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
- A. Abdulle and G. Vilmart, PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge–Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise. J. Comput. Phys. 242 (2013) 869–888. [CrossRef] [MathSciNet] [Google Scholar]
- A. Abdulle, M.J. Grote and G. Rosilho de Souza, Explicit stabilized multirate method for stiff differential equations. Math. Comput. 91 (2022) 2681–2714. [Google Scholar]
- P. Africa, M. Salvador, P. Gervasio, L. Dede’ and A. Quarteroni, A matrix-free high-order solver for the numerical solution of cardiac electrophysiology. J. Comput. Phys. 478 (2023) 111984. [CrossRef] [Google Scholar]
- P.C. Africa, R. Piersanti, M. Fedele, L. Dede’ and A. Quarteroni, Lifex-fiber: an open tool for myofibers generation in cardiac computational models. BMC Bioinf. 24 (2023) 143. [CrossRef] [Google Scholar]
- M.S. Alnaes, A. Logg, K.B. Ølgaard, M.E. Rognes and G.N. Wells, Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40 (2014) 1–37. [CrossRef] [Google Scholar]
- S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W.D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S. Kruger, D.A. May, L.C. McInnes, R.T. Mills, L. Mitchell, T. Munson, J.E. Roman, K. Rupp, P. Sanan, J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang and J. Zhang. PETSc Web (2023). [Google Scholar]
- R.H. Clayton, O. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104 (2011) 22–48. [CrossRef] [Google Scholar]
- M. Clerx, P. Collins, E. de Lange and P.G. Volders, Myokit: a simple interface to cardiac cellular electrophysiology. Prog. Biophys. Mol. Biol. 120 (2016) 100–114. [CrossRef] [Google Scholar]
- G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047–2078. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli Franzone, L.F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology. Vol. 13. Springer (2014). [CrossRef] [Google Scholar]
- Y. Coudière, C.D. Lontsi and C. Pierre, Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology. Electron. Trans. Numer. Anal. 52 (2020) 342–357. [CrossRef] [MathSciNet] [Google Scholar]
- M. Courtemanche, R.J. Ramirez and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Amer. J. Physiol. Heart Circulatory Physiol. 275 (1998) H301–H321. [CrossRef] [Google Scholar]
- M. Croci and G. Rosilho de Souza, Mixed-precision explicit stabilized Runge–Kutta methods for single- and multi-scale differential equations. J. Comput. Phys. 464 (2022) 111349. [CrossRef] [Google Scholar]
- L.D. Dalcin, R.R. Paz, P.A. Kler and A. Cosimo, Parallel distributed computing using Python. Adv. Water Res. 34 (2011) 1124–1139. [CrossRef] [Google Scholar]
- T. Dumont, M. Duarte, S. Descombes, M.A. Dronne, M. Massot and V. Louvet, Simulation of human ischemic stroke in realistic 3D geometry. Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1539–1557. [CrossRef] [MathSciNet] [Google Scholar]
- R.D. Falgout and U.M. Yang, Hypre: a library of high performance preconditioners, in International Conference on Computational Science. Springer (2002) 632–641. [Google Scholar]
- T.E. Fastl, C. Tobon-Gomez, A. Crozier, J. Whitaker, R. Rajani, K.P. McCarthy, D. Sanchez-Quintana, S.Y. Ho, M.D. O’Neill, G. Plank, M.J. Bishop and S.A. Niederer, Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med. Image Anal. 47 (2018) 180–190. [CrossRef] [Google Scholar]
- T.E. Fastl, C. Tobon-Gomez, A. Crozier, J. Whitaker, R. Rajani, K.P. McCarthy, D. Sanchez-Quintana, S.Y. Ho, M.D. O’Neill, G. Plank, M.J. Bishop and S.A. Niederer, Personalized computational finite element models for left atrial electromechanics (2021). [Google Scholar]
- M. Favino, S. Pozzi, S. Pezzuto, F.W. Prinzen, A. Auricchio and R. Krause, Impact of mechanical deformation on pseudo-ECG: a simulation study. EP Europace 18 (2016) iv77–iv84. [Google Scholar]
- L. Gander, S. Pezzuto, A. Gharaviri, R. Krause, P. Perdikaris and F. Sahli Costabal, Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity gaussian process classification. Front. Physiol. 13 (2022) 757159. [CrossRef] [Google Scholar]
- S. Geevers, W.A. Mulder and J.J.W. van der Vegt, New higher-order mass-lumped tetrahedral elements for wave propagation modelling. SIAM J. Sci. Comput. 40 (2018) A2830–A2857. [CrossRef] [Google Scholar]
- A. Gharaviri, E. Bidar, M. Potse, S. Zeemering, S. Verheule, S. Pezzuto, R. Krause, J.G. Maessen, A. Auricchio and U. Schotten, Epicardial fibrosis explains increased endo–epicardial dissociation and epicardial breakthroughs in human atrial fibrillation. Front. Physiol. 11 (2020) 68. [CrossRef] [Google Scholar]
- A. Gharaviri, S. Pezzuto, M. Potse, S. Verheule, G. Conte, R. Krause, U. Schotten and A. Auricchio, Left atrial appendage electrical isolation reduces atrial fibrillation recurrences: simulation study. Circulation: Arrhythmia Electrophysiol. 14 (2021) e009230. [CrossRef] [PubMed] [Google Scholar]
- M.J. Grote and J. Diaz, Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985–2014. [CrossRef] [MathSciNet] [Google Scholar]
- M.J. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234 (2010) 3283–3302. [CrossRef] [MathSciNet] [Google Scholar]
- M.J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped wave equations. J. Comput. Appl. Math. 239 (2013) 270–289. [CrossRef] [MathSciNet] [Google Scholar]
- M.J. Grote, M. Mehlin and T. Mitkova, Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37 (2015) A747–A775. [CrossRef] [Google Scholar]
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Vol. 14. Springer-Verlag, Berlin (2002). [Google Scholar]
- E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, 2 edition. Vol. 8. Springer-Verlag, Berlin (2008). [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
- A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500–544. [CrossRef] [PubMed] [Google Scholar]
- N.M.M. Huynh, F. Chegini, L.F. Pavarino, M. Weiser and S. Scacchi, Convergence analysis of BDDC preconditioners for composite DG discretizations of the cardiac cell-by-cell model. SIAM J. Sci. Comput. 45 (2023) A2836–A2857. [CrossRef] [Google Scholar]
- D. Krause, M. Potse, T. Dickopf, R. Krause, A. Auricchio and F. Prinzen, Hybrid parallelization of a large-scale heart model, in Facing the Multicore-Challenge II. Springer (2012) 120–132. [Google Scholar]
- B. Lindberg, IMPEX: a program package for solution of systems of stiff differential equations. Technical report, Department of Information Processing, Royal Institute of Technology, Stockholm (1972). [Google Scholar]
- B. Lindberg, IMPEX2: a procedure for solution of systems of stiff differential equations. Technical Report TRITA-NA-7303, Department of Information Processing, Royal Institute of Technology, Stockholm, Sweden (1973). [Google Scholar]
- L.P. Lindner, T. Gerach, T. Jahnke, A. Loewe, D. Weiss and C. Wieners, Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology. Int. J. Numer. Methods Biomed. Eng. 39 (2023) e3666. [CrossRef] [PubMed] [Google Scholar]
- C.M. Lloyd, J.R. Lawson, P.J. Hunter and P.F. Nielsen, The CellML model repository. Bioinf. (Oxford, England) 24 (2008) 2122–2123. [Google Scholar]
- C.D. Meyer, D.S. Balsara and T.D. Aslam, A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations. J. Comput. Phys. 257 (2014) 594–626. [CrossRef] [MathSciNet] [Google Scholar]
- S.A. Niederer, E. Kerfoot, A.P. Benson, M.O. Bernabeu, O. Bernus, C. Bradley, E.M. Cherry, R. Clayton, F.H. Fenton, A. Garny, E. Heidenreich, S. Land, M. Maleckar, P. Pathmanathan, G. Plank, J.F. Rodríguez, I. Roy, F.B. Sachse, G. Seemann, O. Skavhaug and N.P. Smith, Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Trans. R. Soci. A: Math. Phys. Eng. Sci. 369 (2011) 4331–4351. [CrossRef] [PubMed] [Google Scholar]
- D. Ogiermann, D. Balzani and L.E. Perotti, An explicit local space-time adaptive framework for monodomain models in cardiac electrophysiology. Comput. Methods Appl. Mech. Eng. 422 (2024) 116806. [CrossRef] [Google Scholar]
- P. Pathmanathan, G.R. Mirams, J. Southern and J.P. Whiteley, The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations. Int. J. Numer. Methods Biomed. Eng. 27 (2011) 1751–1770. [CrossRef] [MathSciNet] [Google Scholar]
- S. Pezzuto, J. Hake and J. Sundnes, Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology. Int. J. Numer. Methods Biomed. Eng. 32 (2016) e02762. [CrossRef] [Google Scholar]
- S. Pezzuto, A. Quaglino and M. Potse, On sampling spatially-correlated random fields for complex geometries, in Functional Imaging and Modeling of the Heart, edioted by Y. Coudière, V. Ozenne, E. Vigmond and N. Zemzemi. Vol. 11504. Springer International Publishing, Cham (2019) 103–111. [CrossRef] [Google Scholar]
- R. Piersanti, P.C. Africa, M. Fedele, C. Vergara, L. Dedè, A.F. Corno and A. Quarteroni, Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Comput. Methods Appl. Mech. Eng. 373 (2021) 113468. [CrossRef] [Google Scholar]
- A. Quarteroni, L. Dedè and F. Regazzoni, Modeling the cardiac electromechanical function: a mathematical journey. Bull. Am. Math. Soc. 59 (2022) 371–403. [CrossRef] [Google Scholar]
- G. Rosilho De Souza, Numerical methods for deterministic and stochastic differential equations with multiple scales and high contrasts. Ph.D. Thesis, EPFL (2020). [Google Scholar]
- G. Rosilho De Souza, mRKC: a multirate Runge–Kutta–Chebyshev code (2022). [Google Scholar]
- G. Rosilho de Souza, S. Pezzuto and R. Krause, Effect of gap junction distribution, size and shape on the conduction velocity in a cell-by-cell model for electrophysiology, in Functional Imaging and Modeling of the Heart. Vol. 13958 of Lecture Notes in Computer Science, edited by O. Bernard, P. Clarysse, N. Duchateau, J. Ohayon and M. Viallon. Springer, Cham (2023) 117–126. [CrossRef] [Google Scholar]
- G. Rosilho de Souza, R. Krause and S. Pezzuto, Boundary integral formulation of the cell-by-cell model of cardiac electrophysiology. Eng. Anal. Boundary Elem. 158 (2024) 239–251. [CrossRef] [MathSciNet] [Google Scholar]
- S. Rush and H. Larsen, A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME-25 (1978) 389–392. [CrossRef] [Google Scholar]
- F. Sahli Costabal, T. Banduc, L. Gander and S. Pezzuto, The fibrotic kernel signature: simulation-free prediction of atrial fibrillation, in Functional Imaging and Modeling of the Heart. Vol. 13958 of Lecture Notes in Computer Science, edited by O. Bernard, P. Clarysse, N. Duchateau, J. Ohayon and M. Viallon. Springer, Cham (2023) 87–96. [CrossRef] [Google Scholar]
- M.W. Scroggs, I.A. Baratta, C.N. Richardson and G.N. Wells, Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7 (2022) 3982. [CrossRef] [Google Scholar]
- M.W. Scroggs, J.S. Dokken, C.N. Richardson and G.N. Wells, Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes. ACM Trans. Math. Softw. 48 (2022) 18:1–18:23. [CrossRef] [Google Scholar]
- L.F. Shampine, Lipschitz constants and robust ode codes’, Computational Methods in Nonlinear Mechanics, in Proceedings of the TICOM Second International Conference, edited by J.T. Oden. North-Holland Publishing Company, New York (1980) 427–449. [Google Scholar]
- L.F. Shampine, Diagnosing stiffness for Runge–Kutta methods. SIAM J. Sci. Stat. Comput. 12 (1991) 260–272. [CrossRef] [Google Scholar]
- B.P. Sommeijer, L. Shampine and J.G. Verwer, RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math. 88 (1998) 315–326. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Spiteri and R.C. Dean, Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38 (2010) 3592–3604. [CrossRef] [PubMed] [Google Scholar]
- R.J. Spiteri and R.C. Dean, Erratum: stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 40 (2012) 1622–1625. [CrossRef] [Google Scholar]
- K.H.W.J. Ten Tusscher and A.V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circulatory Physiol. 291 (2006) H1088–1100. [CrossRef] [PubMed] [Google Scholar]
- P.J. Van der Houwen and B.P. Sommeijer, On the internal stability of explicit, $m$-stage Runge–Kutta methods for large m-values. Z. Angew. Math. Mech. 60 (1980) 479–485. [CrossRef] [MathSciNet] [Google Scholar]
- J.G. Verwer, An implementation of a class of stabilized explicit methods for the time integration of parabolic equations. ACM Trans. Math. Softw. (TOMS) 6 (1980) 188–205. [CrossRef] [Google Scholar]
- J.G. Verwer, Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22 (1996) 359–379. [CrossRef] [MathSciNet] [Google Scholar]
- J.G. Verwer, W. Hundsdorfer and B.P. Sommeijer, Convergence properties of the Runge–Kutta–Chebyshev method. Numer. Math. 57 (1990) 157–178. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.