Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
|
|
---|---|---|
Page(s) | 2387 - 2414 | |
DOI | https://doi.org/10.1051/m2an/2024079 | |
Published online | 04 December 2024 |
- A. Abdulle, G.A. Pavliotis and A. Zanoni, Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale diffusions. Stat. Comput. 32 (2022) 33. [CrossRef] [Google Scholar]
- A. Abdulle, G. Garegnani, G.A. Pavliotis, A.M. Stuart and A. Zanoni, Drift estimation of multiscale diffusions based on filtered data. Found. Comput. Math. 23 (2023) 33–84. [CrossRef] [MathSciNet] [Google Scholar]
- Y. A¨ıt-Sahalia and J. Jacod, High-Frequency Financial Econometrics. Princeton University Press (2014). [Google Scholar]
- Y. A¨ıt-Sahalia, P.A. Mykland and L. Zhang, How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18 (2005) 351–416. [CrossRef] [Google Scholar]
- A. Arnold, L.L. Bonilla and P.A. Markowich, Liapunov functionals and large-time-asymptotics of mean-field nonlinear Fokker–Planck equations. Transp. Theory Stat. Phys. 25 (1996) 733–751. [CrossRef] [Google Scholar]
- R. Azencott, A. Beri and I. Timofeyev, Adaptive sub-sampling for parametric estimation of Gaussian diffusions. J. Stat. Phys. 139 (2010) 1066–1089. [CrossRef] [MathSciNet] [Google Scholar]
- R. Azencott, A. Beri, A. Jain and I. Timofeyev, Sub-sampling and parametric estimation for multiscale dynamics. Commun. Math. Sci. 11 (2013) 939–970. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York (1978). [Google Scholar]
- A. Benveniste, M. Métivier and P. Priouret, Adaptive Algorithms and Stochastic Approximations. Vol. 22 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1990). Translated from the French by Stephen S. Wilson. [Google Scholar]
- D.P. Bertsekas and J.N. Tsitsiklis, Gradient convergence in gradient methods with errors. SIAM J. Optim. 10 (2000) 627–642. [CrossRef] [MathSciNet] [Google Scholar]
- C.J. Cotter and G.A. Pavliotis, Estimating eddy diffusivities from noisy Lagrangian observations. Commun. Math. Sci. 7 (2009) 805–838. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Duncan, S. Kalliadasis, G.A. Pavliotis and M. Pradas, Noise-induced transitions in rugged energy landscapes. Phys. Rev. E 94 (2016) 032107. [CrossRef] [PubMed] [Google Scholar]
- A.B. Duncan, M.H. Duong and G.A. Pavliotis, Brownian motion in an N-scale periodic potential. J. Stat. Phys. 190 (2023) 34. [CrossRef] [Google Scholar]
- S. Gailus and K. Spiliopoulos, Statistical inference for perturbed multiscale dynamical systems. Stochastic Process. Appl. 127 (2017) 419–448. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gailus and K. Spiliopoulos, Discrete-time statistical inference for multiscale diffusions. Multiscale Model. Simul. 16 (2018) 1824–1858. [CrossRef] [MathSciNet] [Google Scholar]
- E. García-Portugués, M. Sørensen, K.V. Mardia and T. Hamelryck, Langevin diffusions on the torus: estimation and applications. Stat. Comput. 29 (2019) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
- G. Garegnani and A. Zanoni, Robust estimation of effective diffusions from multiscale data. Commun. Math. Sci. 21 (2023) 405–435. [CrossRef] [MathSciNet] [Google Scholar]
- S.N. Gomes and G.A. Pavliotis, Mean field limits for interacting diffusions in a two-scale potential. J. Nonlinear Sci. 28 (2018) 905–941. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. Hirsch, Python code for “Stochastic gradient descent in continuous time for drift identification in multiscale diffusions” (2024). https://github.com/maxhirsch/Multiscale-SGDCT. [Google Scholar]
- N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications. Osaka Math. J. 14 (1977) 619–633. [MathSciNet] [Google Scholar]
- M. Kessler and M. Sørensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5 (1999) 299–314. [CrossRef] [MathSciNet] [Google Scholar]
- S. Krumscheid, G.A. Pavliotis and S. Kalliadasis, Semiparametric drift and diffusion estimation for multiscale diffusions. Multiscale Model. Simul. 11 (2013) 442–473. [CrossRef] [MathSciNet] [Google Scholar]
- S. Krumscheid, M. Pradas, G.A. Pavliotis and S. Kalliadasis, Data-driven coarse graining in action: modeling and prediction of complex systems. Phys. Rev. E 92 (2015) 042139. [CrossRef] [PubMed] [Google Scholar]
- H.J. Kushner and G.G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Vol. 35 of Applications of Mathematics: Stochastic Modelling and Applied Probability (New York), 2nd edition. Springer-Verlag, New York (2003). [Google Scholar]
- F. Legoll and T. Lelièvre, Some remarks on free energy and coarse-graining, in Numerical Analysis of Multiscale Computations. Vol. 82 of Lect. Notes Comput. Sci. Eng. Springer, Heidelberg (2012) 279–329. [CrossRef] [Google Scholar]
- T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016) 681–880. [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. [Google Scholar]
- S.C. Olhede, A.M. Sykulski and G.A. Pavliotis, Frequency domain estimation of integrated volatility for Itô processes in the presence of market-microstructure noise. Multiscale Model. Simul. 8 (2010) 393–427. [CrossRef] [Google Scholar]
- A. Papavasiliou, G.A. Pavliotis and A.M. Stuart, Maximum likelihood drift estimation for multiscale diffusions. Stoch. Process. Appl. 119 (2009) 3173–3210. [CrossRef] [Google Scholar]
- E. Pardoux and A.Y. Veretennikov, On the Poisson equation and diffusion approximation. I. Ann. Probab. 29 (2001) 1061–1085. [CrossRef] [MathSciNet] [Google Scholar]
- E. Pardoux and A.Y. Veretennikov, On Poisson equation and diffusion approximation. II. Ann. Probab. 31 (2003) 1166–1192. [CrossRef] [MathSciNet] [Google Scholar]
- E. Pardoux and A.Y. Veretennikov, On the Poisson equation and diffusion approximation. III. Ann. Probab. 33 (2005) 1111–1133. [CrossRef] [MathSciNet] [Google Scholar]
- G.A. Pavliotis and A.M. Stuart, Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741–781. [CrossRef] [MathSciNet] [Google Scholar]
- G.A. Pavliotis and A.M. Stuart, Multiscale Methods: Averaging and Homogenization. Vol. 53 of Texts in Applied Mathematics. Springer, New York (2008). [Google Scholar]
- G.A. Pavliotis, Y. Pokern and A.M. Stuart, Parameter estimation for multiscale diffusions: an overview, in Statistical Methods for Stochastic Differential Equations. Vol. 124 of Monogr. Stat. Appl. Probab. CRC Press, Boca Raton, FL (2012). [Google Scholar]
- G.A. Pavliotis, S. Reich and A. Zanoni, Filtered data based estimators for stochastic processes driven by colored noise. Preprint arXiv:2312.15975 (2024). [Google Scholar]
- J. Sirignano and K. Spiliopoulos, Stochastic gradient descent in continuous time. SIAM J. Finan. Math. 8 (2017) 933–961. [CrossRef] [Google Scholar]
- J. Sirignano and K. Spiliopoulos, Stochastic gradient descent in continuous time: a central limit theorem. Stoch. Syst. 10 (2020) 124–151. [CrossRef] [MathSciNet] [Google Scholar]
- L.N. Smith, A disciplined approach to neural network hyper-parameters: part 1 – learning rate, batch size, momentum, and weight decay. Preprint arXiv:1803.09820 (2018). [Google Scholar]
- A. Zanoni, Homogenization results for the generator of multiscale Langevin dynamics in weighted Sobolev spaces. IMA J. Appl. Math. 88 (2023) 67–101. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.