Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 613 - 641 | |
DOI | https://doi.org/10.1051/m2an/2024085 | |
Published online | 11 February 2025 |
- R.P. Agarwal, M. Meehan and D. O’regan, Fixed Point Theory and Applications. Vol. 141. Cambridge University Press (2001). [Google Scholar]
- P.-F. Antonietti, I. Mazzieri, M. Muhr, V. Nikolić and B. Wohlmuth, A high-order discontinuous Galerkin method for nonlinear sound waves. J. Comput. Phys. 415 (2020) 109484. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, in Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [Google Scholar]
- B. Cockburn and V. Quenneville-Bélair, Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83 (2014) 65–85. [Google Scholar]
- B. Cockburn, B. Dong and J. Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (2008) 1887–1916. [CrossRef] [Google Scholar]
- B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
- B. Cockburn, J. Guzmán and H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78 (2009) 1–24. [CrossRef] [Google Scholar]
- B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. [Google Scholar]
- B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. [CrossRef] [Google Scholar]
- B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86 (2017) 1609–1641. [Google Scholar]
- B. Cockburn, Z. Fu, A. Hungria, L. Ji, M.-A. Sánchez and F.-J. Sayas, Stormer–Numerov HDG methods for acoustic waves. J. Sci. Comput. 75 (2018) 597–624. [CrossRef] [MathSciNet] [Google Scholar]
- L. Demi and M.D. Verweij, Nonlinear acoustics, in Comprehensive Biomedical Physics. Elsevier, Oxford (2014) 387–399. [Google Scholar]
- D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. [Google Scholar]
- B. Dörich and V. Nikolić, Robust fully discrete error bounds for the Kuznetsov equation in the inviscid limit. Preprint: arXiv:2401.06492 (2024). [Google Scholar]
- R. Griesmaier and P. Monk, Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput. 58 (2014) 472–498. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hochbruck and B. Maier, Error analysis for space discretizations of quasilinear wave-type equations. IMA J. Numer. Anal. 42 (2022) 1963–1990. [CrossRef] [MathSciNet] [Google Scholar]
- T.J.R. Hughes, The Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, NJ (1987). [Google Scholar]
- M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators. Vol. 2. Springer (2007). [Google Scholar]
- B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst. Ser. S 2 (2009) 503–523. [MathSciNet] [Google Scholar]
- B. Kaltenbacher and V. Nikolić, Parabolic approximation of quasilinear wave equations with applications in nonlinear acoustics. SIAM J. Math. Anal. 54 (2022) 1593–1622. [CrossRef] [MathSciNet] [Google Scholar]
- B. Kaltenbacher and G. Peichl, The shape derivative for an optimization problem in lithotripsy. Evol. Equ. Control Theory 5 (2016) 399–429. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kaltenbacher, H. Landes, J. Hoffelner and R. Simkovics, Use of modern simulation for industrial applications of high power ultrasonics, in 2002 IEEE Ultrasonics Symposium. Vol. 1. IEEE (2002) 673–678. [Google Scholar]
- B. Kaltenbacher, M. Meliani and V. Nikolić, Limiting behavior of quasilinear wave equations with fractional-type dissipation. Adv. Nonlinear Stud. 24 (2024) 748–774. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity. Comm. Math. Phys. 148 (1992) 189–208. [CrossRef] [MathSciNet] [Google Scholar]
- V.P. Kuznetsov, Equations of nonlinear acoustics. Sov. Phys. Acoustic 16 (1970) 467–470. [Google Scholar]
- B. Maier, Error analysis for space and time discretizations of quasilinear wave-type equations. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT) (2020). [Google Scholar]
- M. Meliani, A unified analysis framework for generalized fractional Moore–Gibson–Thompson equations: well-posedness and singular limits. Fract. Calc. Appl. Anal. 26 (2023) 2540–2579. [CrossRef] [MathSciNet] [Google Scholar]
- M. Meliani and V. Nikolić, Analysis of general shape optimization problems in nonlinear acoustics. Appl. Math. Optim. 86 (2022) 39. [CrossRef] [Google Scholar]
- M. Meliani and V. Nikolić, Mixed approximation of nonlinear acoustic equations: well-posedness and a priori error analysis. Appl. Numer. Math. 198 (2024) 94–111. [CrossRef] [MathSciNet] [Google Scholar]
- S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation. Appl. Math. Optim. 64 (2011) 257–271. [CrossRef] [MathSciNet] [Google Scholar]
- N.C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230 (2011) 7151–7175. [Google Scholar]
- V. Nikolić, Asymptotic-preserving finite element analysis of Westervelt-type wave equations. Preprint: arXiv:2303.10743 (2023). [Google Scholar]
- V. Nikolić and B. Wohlmuth, A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57 (2019) 1897–1918. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Sánchez, C. Ciuca, N.C. Nguyen, J. Peraire and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350 (2017) 951–973. [CrossRef] [MathSciNet] [Google Scholar]
- I. Shevchenko and B. Kaltenbacher, Absorbing boundary conditions for nonlinear acoustics: the Westervelt equation. J. Comput. Phys. 302 (2015) 200–221. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Westervelt, Parametric acoustic array. J. Acoust. Soc. Am. 35 (1963) 535–537. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.