Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1763 - 1790
DOI https://doi.org/10.1051/m2an/2025041
Published online 26 June 2025
  1. U. an der Heiden and M.C. Mackey, The dynamics of production and destruction: analytic insight into complex behavior. J. Math. Biol. 16 (1982) 75–101. [Google Scholar]
  2. R. Anguelov, Y. Dumont and J.M.S. Lubuma, On nonstandard finite difference schemes in biosciences. AIP Conf. Proc. 1487 (2012) 212–223. [CrossRef] [Google Scholar]
  3. R. Anguelov and J.S. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Part. Differ. Equ. 17 (2001) 518–543. [CrossRef] [Google Scholar]
  4. P. Atkins and J. De Paula, Elements of Physical Chemistry. Oxford University Press, USA (2013). [Google Scholar]
  5. V.I. Baranov and L.A. Gribov, A simple model for predicting the course of photochemical reactions. High Energy Chem. 48 (2014) 363–370. [CrossRef] [Google Scholar]
  6. V.I. Baranov, L.A. Gribov and I.V. Mikhailov, A mathematical model of photochemical transformations: analysis of the influence of basic characteristics of the model. High Energy Chem. 51 (2017) 433–439. [CrossRef] [Google Scholar]
  7. B. Benne, M. Dobrijevic, T. Cavalié, J.-C. Loison and K.M. Hickson, A photochemical model of Triton’s atmosphere paired with an uncertainty propagation study. Astron. Astrophys. 667 (2022) A169. [CrossRef] [EDP Sciences] [Google Scholar]
  8. S. Blanes, A. Iserles and S. Macnamara, Positivity-preserving methods for ordinary differential equations. ESAIM: M2AN 56 (2022) 1843–1870. [CrossRef] [EDP Sciences] [Google Scholar]
  9. C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO: Analyse numérique 12 (1978) 237–245. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. H. Brunner and P. van der Houwen, The Numerical Solution of Volterra Equations. CWI Monograph North-Holland, Amsterdam (1986). [Google Scholar]
  11. B. Buonomo, E. Messina, C. Panico and A. Vecchio, A stable numerical method for integral epidemic models with behavioral changes in contact patterns. ETNA – Electr. Trans. Numer. Anal. 61 (2024) 137–156. [CrossRef] [Google Scholar]
  12. M. Ceseri, R. Natalini and M. Pezzella, An integro-differential model of cadmium yellow photodegradation. Preprint arXiv:2411.06997 (2024). [Google Scholar]
  13. A. Chattopadhyay, R. Rukmini and S. Mukherjee, Photophysics of a neurotransmitter: ionization and spectroscopic properties of serotonin. Biophys. J. 71 (1996) 1952–1960. [CrossRef] [Google Scholar]
  14. J. Cid-Araújo, The uniqueness of fixed points for decreasing operators. Appl. Math. Lett. 17 (2004) 861–866. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Clarelli, C. Di Russo, R. Natalini and M. Ribot, A fluid dynamics model of the growth of phototrophic biofilms. J. Math. Biol. 66 (2013) 1387–1408. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. D. Conte, N. Guarino, G. Pagano and B. Paternoster, On the advantages of nonstandard finite difference discretizations for differential problems. Numer. Anal. App. 15 (2022) 219–235. [CrossRef] [Google Scholar]
  17. C. D’Aquino, W. Balmant, R. Ribeiro, M. Munaro, J. Vargas and S. Amico, A simplified mathematical model to predict PVC photodegradation in photobioreactors. Polym. Testing 31 (2012) 638–644. [CrossRef] [Google Scholar]
  18. P. Davis and P. Rabinowitz, Methods of Numerical Integration. Computer Science and Applied Mathematics, 2nd edition. Academic Press, Inc., Orlando (1984). [Google Scholar]
  19. P. Eilers and J. Peeters, A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42 (1988) 199–215. [CrossRef] [Google Scholar]
  20. Y. Fan, M. Deng, G. Chen, Q. Zhang, Y. Luo, D. Li and Q. Meng, Effect of calcination on the photocatalytic performance of CdS under visible light irradiation. J. Alloys Compd. 509 (2011) 1477–1481. [CrossRef] [Google Scholar]
  21. C. Fan, X. Zhang and J. Qiu, Positivity-preserving high order finite difference WENO schemes for compressible Navier–Stokes equations. J. Comput. Phys. 467 (2022) 111446. [CrossRef] [Google Scholar]
  22. L. Formaggia and A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49 (2011) 1267–1288. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Garey, Predictor–corrector methods for nonlinear Volterra integral equations of the second kind. BIT Numer. Math. 12 (1972) 325–333. [CrossRef] [Google Scholar]
  24. A. Gobrecht, R. Bendoula, J.M. Roger and V. Bellon-Maurel, Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer–Lambert law absorbance of highly scattering materials. Anal. Chim. Acta 853 (2015) 486–494. [CrossRef] [Google Scholar]
  25. M. Gomez Lobon, M. Ghirardello, E. Juncosa Darder, C. Palomino Cabello, M. Bauza, M. Cotte, A. Burnstock, A. Nevin, S.R. Amato, F.C. Izzo and D. Comelli, A study of cadmium yellow paints from Joan Mirós paintings and studio materials preserved at the Fundació Miró Mallorca. Heritage Sci. 11 (2023) 145. [CrossRef] [Google Scholar]
  26. E. Hairer, M. Hochbruck, A. Iserles and C. Lubich, Geometric numerical integration. Oberwolfach Rep. 3 (2006) 805–882. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.T. Hoang, A novel second-order nonstandard finite difference method preserving dynamical properties of a general single-species model. Int. J. Comput. Math. 100 (2023) 2047–2062. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Hoang, High-order nonstandard finite difference methods preserving dynamical properties of one-dimensional dynamical systems. Numer. Algorithms 98 (2025) 219–249. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Izgin, S. Kopecz, A. Martiradonna and A. Meister, On the dynamics of first and second order GeCo and gBBKS schemes. Appl. Numer. Math. 193 (2023) 43–66. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Izzo, E. Messina, M. Pezzella and A. Vecchio, Modified patankar linear multistep methods for production-destruction systems. J. Sci. Comput. 102 (2025) 87. [CrossRef] [Google Scholar]
  31. T.E. La Cruz, T.C. Carvalho, A. Ramirez and J.E. Tabora, Implementation of a mathematical model for the photochemical kinetics of a solid form active pharmaceutical ingredient. Int. J. Pharm. 566 (2019) 500–512. [CrossRef] [Google Scholar]
  32. K. Laidler, A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC recommendations 1996). Pure Appl. Chem. 68 (1996) 149–192. [Google Scholar]
  33. M. Levin, G.A. Buznikov and J.M. Lauder, Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev. Neurosci. 28 (2006) 171–185. [CrossRef] [PubMed] [Google Scholar]
  34. P. Linz, Analytical and Numerical Methods for Volterra Equations. Society for Industrial and Applied Mathematics (1985) [CrossRef] [Google Scholar]
  35. S.G. Lobanov and O.G. Smolyanov, Ordinary differential equations in locally convex spaces. Uspekhi Mat. Nauk 49 (1994) 93–168. [Google Scholar]
  36. J.M.-S. Lubuma and Y. Terefe, A nonstandard Volterra difference equation for the SIS epidemiological model. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 109 (2015) 597–602. [Google Scholar]
  37. M. Maafi and W. Maafi, Modeling and elucidation of the kinetics of multiple consecutive photoreactions AB4(4Φ) with Φ-order kinetics. Application to the photodegradation of Riboflavin. J. Pharm. Sci. 105 (2016) 3537–3548. [CrossRef] [Google Scholar]
  38. P. Manning and G. Margrave, Introduction to non-standard finite-difference modelling. CREWES Res. Rep. 18 (2006) 46.1–46.10. [Google Scholar]
  39. A. Martiradonna, G. Colonna and F. Diele, GeCo: geometric conservative nonstandard schemes for biochemical systems. Appl. Numer. Math. 155 (2020) 38–57. [CrossRef] [MathSciNet] [Google Scholar]
  40. J.L. Mass, R. Opila, B. Buckley, M. Cotte, J. Church and A. Mehta, The photodegradation of cadmium yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906). Appl. Phys. A 111 (2012) 59–68. [Google Scholar]
  41. J. Mass, J. Sedlmair, C.S. Patterson, D. Carson, B. Buckley and C. Hirschmugl, SR-FTIR imaging of the altered cadmium sulfide yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906) – examination of visually distinct degradation regions. Analyst 138 (2013) 6032. [CrossRef] [PubMed] [Google Scholar]
  42. D.E. McLain, A.C. Rea, M.B. Widegren and T.M. Dore, Photoactivatable, biologically-relevant phenols with sensitivity toward 2-photon excitation. Photochem. Photobiol. Sci. 14 (2015) 2151–2158. [CrossRef] [PubMed] [Google Scholar]
  43. E. Messina, M. Pezzella and A. Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model. J. Comput. Dyn. 9 (2022) 239–252. [CrossRef] [MathSciNet] [Google Scholar]
  44. E. Messina, M. Pezzella and A. Vecchio, Positive numerical approximation of integro-differential epidemic model. Axioms 11 (2022) 69. [CrossRef] [Google Scholar]
  45. E. Messina, M. Pezzella and A. Vecchio, Asymptotic solutions of non-linear implicit Volterra discrete equations. J. Comput. Appl. Math. 425 (2023) 115068. [CrossRef] [Google Scholar]
  46. E. Messina, M. Pezzella and A. Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics. Math. Biosci. Eng. 20 (2023) 11656–11675. [CrossRef] [MathSciNet] [Google Scholar]
  47. E. Messina, M. Pezzella and A. Vecchio, A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing. Appl. Numer. Math. 200 (2024) 344–357. [CrossRef] [MathSciNet] [Google Scholar]
  48. R. Mickens, Nonstandard Finite Difference Models of Differential Equations. World Scientific (1993). [CrossRef] [Google Scholar]
  49. R. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. App. 11 (2005) 645–653. [CrossRef] [Google Scholar]
  50. R. Mickens, Nonstandard Finite Difference Schemes. World Scientific (2020). [CrossRef] [Google Scholar]
  51. R. Mickens and T. Washington, A note on a NSFD discretization of a Sobolev type PDE. J. Differ. Equ. App. 31 (2025) 292–297. [CrossRef] [Google Scholar]
  52. L. Monico, K. Janssens, M. Cotte, A. Romani, L. Sorace, C. Grazia, B.G. Brunetti and C. Miliani, Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. J. Anal. At. Spectrom. 30 (2015) 1500–1510. [CrossRef] [Google Scholar]
  53. L. Monico, A. Chieli, S. De Meyer, M. Cotte, W. de Nolf, G. Falkenberg, K. Janssens, A. Romani and C. Miliani, Role of the relative humidity and the Cd/Zn stoichiometry in the photooxidation process of cadmium yellows (CdS/Cd1−xZnxS) in oil paintings. Chem. – Eur. J. 24 (2018) 11584–11593. [CrossRef] [PubMed] [Google Scholar]
  54. L. Monico, L. Cartechini, F. Rosi, A. Chieli, C. Grazia, S.D. Meyer, G. Nuyts, F. Vanmeert, K. Janssens, M. Cotte, W.D. Nolf, G. Falkenberg, I.C.A. Sandu, E.S. Tveit, J. Mass, R.P. de Freitas, A. Romani and C. Miliani, Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Sci. Adv. 6 (2020) eaay3514. [CrossRef] [Google Scholar]
  55. V.A. Morozov, Y.M. Dubina and E.A. Smolenskii, Mathematical modeling of the dynamics of photoreactions of a five-level molecule. Russian J. Phys. Chem. B 11 (2017) 199–207. [CrossRef] [Google Scholar]
  56. P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. [CrossRef] [MathSciNet] [Google Scholar]
  57. P.K. Pandey, Non-standard difference method for numerical solution of linear Fredholm integro-differential type two-point boundary value problems. Open Access Lib. 2 (2015) 1–10. [Google Scholar]
  58. K.C. Patidar, Nonstandard finite difference methods: recent trends and further developments. J. Differ. Equ. App. 22 (2016) 817–849. [CrossRef] [Google Scholar]
  59. M. Persico and G. Granucci, Photochemistry. Springer International Publishing (2018). [CrossRef] [Google Scholar]
  60. E. Pouyet, M. Cotte, B. Fayard, M. Salomé, F. Meirer, A. Mehta, E.S. Uffelman, A. Hull, F. Vanmeert, J. Kieffer, M. Burghammer, K. Janssens, F. Sette and J. Mass, 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse. Appl. Phys. A 121 (2015) 967–980. [CrossRef] [Google Scholar]
  61. A.C. Rea, L.N. Vandenberg, R.E. Ball, A.A. Snouffer, A.G. Hudson, Y. Zhu, D.E. McLain, L.L. Johnston, J.D. Lauderdale, M. Levin and T.M. Dore, Light-activated serotonin for exploring its action in biological systems. Chem. Biol. 20 (2013) 1536–1546. [CrossRef] [Google Scholar]
  62. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry. A Halsted Press book, Wiley (1978). [Google Scholar]
  63. W. Rudin, Principles of Mathematical Analysis, 3rd edition. McGraw-Hill, New York (1976). [Google Scholar]
  64. W. Rudin, Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edition. McGraw-Hill, New York (1991). [Google Scholar]
  65. M. Ruzicka, Nichtlineare Funktionalanalysis. Springer-Lehrbuch Masterclass Series. Springer Berlin Heidelberg (2006). [Google Scholar]
  66. A. Sandu, Positive numerical integration methods for chemical kinetic systems. J. Comput. Phys. 170 (2001) 589–602. [CrossRef] [MathSciNet] [Google Scholar]
  67. C. Scalone, Positivity preserving stochastic θ-methods for selected SDEs. Appl. Numer. Math. 172 (2022) 351–358. [CrossRef] [MathSciNet] [Google Scholar]
  68. K. Sharma, S. Swami, V. Joshi and S. Bhardwaj, Review on non-standard finite difference (NSFD) schemes for solving linear and non-linear differential equations, in Advanced Numerical Methods for Differential Equations. CRC Press (2021) 135–154. [CrossRef] [Google Scholar]
  69. J. Sunday, A. Shokri, R.O. Akinola, K.V. Joshua and K. Nonlaopon, A convergence-preserving non-standard finite difference scheme for the solutions of singular Lane-Emden equations. Results Phys. 42 (2022) 106031. [CrossRef] [Google Scholar]
  70. J. Thebault and S. Rabouille, Comparison between two mathematical formulations of the phytoplankton specific growth rate as a function of light and temperature, in two simulation models (ASTER & YOYO). Ecol. Model. 163 (2003) 145–151. [CrossRef] [Google Scholar]
  71. H. Tonnesen, Photostability of Drugs and Drug Formulations. Taylor & Francis Series in Pharmaceutical Sciences. Taylor & Francis (1996). [Google Scholar]
  72. L.N. Vandenberg and M. Levin, Far from solved: a perspective on what we know about early mechanisms of left–right asymmetry. Dev. Dyn. 239 (2010) 3131–3146. [CrossRef] [PubMed] [Google Scholar]
  73. D. Yuan, J. Cheng and C.W. Shu, High order positivity-preserving discontinuous Galerkin methods for radiative transfer equations. SIAM J. Sci. Comput. 38 (2016) A2987–A3019. [CrossRef] [Google Scholar]
  74. L. Zhang, J. Peng, Y. Ge, H. Li and Y. Tang, High-accuracy positivity-preserving finite difference approximations of the chemotaxis model for tumor invasion. J. Comput. Biol. 31 (2024) 1224–1258. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you