Open Access
Issue
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
Page(s) 1831 - 1861
DOI https://doi.org/10.1051/m2an/2025044
Published online 04 July 2025
  1. X. Cai, J.-M. Qiu and Y. Yang, An Eulerian–Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics. J. Comput. Phys. 439 (2021) 110392. [Google Scholar]
  2. J. Chen, J. Nakao, J.-M. Qiu and Y. Yang, A high-order Eulerian–Lagrangian Runge–Kutta finite volume (EL-RK-FV) method for scalar nonlinear conservation laws. J. Sci. Comput. 102 (2025) 12. [Google Scholar]
  3. B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  4. M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2013). [Google Scholar]
  5. S. Gottlieb, D. Ketcheson and C-W. Shu, High order strong stability preserving time discretizations. J. Sci. Comput. 38 (2009) 251–289. [Google Scholar]
  6. P. Guthrey and J. Rossmanith, The regionally implicit discontinuous Galerkin method: improving the stability of DG-FEM. SIAM J. Numer. Anal. 57 (2019) 1263–1288. [Google Scholar]
  7. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [Google Scholar]
  8. R. Healy and T. Russell, Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian–Lagrangian localized adjoint method. Adv. Water Res. 21 (1998) 11–26. [CrossRef] [Google Scholar]
  9. C.-S. Huang, T. Arbogast and J. Qiu An Eulerian–Lagrangian WENO finite volume scheme for advection problems. J. Comput. Phys. 231 (2012) 4028–4052. [Google Scholar]
  10. G. Jiang and J. Wang, Entropy consistency of large time step schemes for isentropic equations of gas dynamics. Acta Math. Sci. 13 (1993) 361–383. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. LeVeque, Large time step shock-capturing techniques for scalar conservation laws. SIAM J. Numer. Anal. 19 (1982) 1091–1109. [Google Scholar]
  12. R. LeVeque, Convergence of a large time step generalization of Godunovs method for conservation laws. Commun. Pure Appl. Math. 37 (1984) 463–477. [CrossRef] [Google Scholar]
  13. R. LeVeque, A large time step generalization of Godunovs method for systems of conservation laws. SIAM J. Numer. Anal. 22 (1985) 1051–1073. [Google Scholar]
  14. R. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2022). [Google Scholar]
  15. J. Nakao, J. Chen and J. Qiu An Eulerian–Lagrangian Runge–Kutta finite volume (EL–RK–FV) method for solving convection and convection-diffusion equations. J. Comput. Phys. 470 (2022) 111589. [Google Scholar]
  16. J.-M. Qiu and C.-W. Shu, Convergence of Godunov-type schemes for scalar conservation laws under large time steps. SIAM J. Numer. Anal. 46 (2008) 2211–2237. [Google Scholar]
  17. D.K. Yoon and W.J. Hwang, Two-dimensional Riemann problem for Burgers’ equation. Bull. Korean Math. Soc. 45 (2008) 191–205. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you