Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 1909 - 1936 | |
DOI | https://doi.org/10.1051/m2an/2025045 | |
Published online | 14 July 2025 |
- R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, J. Dahm, D. Medina and S. Zampini, MFEM: a modular finite element methods library. Comput. Math. App. 81 (2021) 42–74. [Google Scholar]
- J. Andrej, N. Atallah, J.-P. B¨acker, J.-S. Camier, D. Copeland, V. Dobrev, Y. Dudouit, T. Duswald, B. Keith, D. Kim, T. Kolev, B. Lazarov, K. Mittal, W. Pazner, S. Petrides, S. Shiraiwa, M. Stowell and V. Tomov, High-performance finite elements with MFEM. Int. J. High Perform. Comput. App. 38 (2024) 447–467. [Google Scholar]
- P.F. Antonietti and P. Houston, A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods. J. Sci. Comput. 46 (2010) 124–149. [Google Scholar]
- P.F. Antonietti and L. Melas, Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods. SIAM J. Sci. Comput. 42 (2020) A1147–A1173. [Google Scholar]
- P.F. Antonietti, S. Giani and P. Houston, Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60 (2013) 203–227. [Google Scholar]
- P.F. Antonietti, M. Sarti, M. Verani and L.T. Zikatanov, A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70 (2016) 608–630. [Google Scholar]
- D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [Google Scholar]
- D.N. Arnold, F. Brezzi, B. Cockburn and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [Google Scholar]
- D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. [Google Scholar]
- P. Bastian, E.H. Müller, S. Müthing and M. Piatkowski, Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations. J. Comput. Phys. 394 (2019) 417–439. [Google Scholar]
- M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bernardi and Y. Maday, Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43 (1992) 53–80. [Google Scholar]
- K. Brix, M. Campos Pinto, C. Canuto and W. Dahmen, Multilevel preconditioning of discontinuous Galerkin spectral element methods. Part I: geometrically conforming meshes. IMA J. Numer. Anal. 35 (2014) 1487–1532. [Google Scholar]
- P.D. Brubeck and P.E. Farrell, A scalable and robust vertex-star relaxation for high-order FEM. SIAM J. Sci. Comput. 44 (2022) A2991–A3017. [CrossRef] [Google Scholar]
- E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comput. 76 (2007) 1119–1141. [CrossRef] [Google Scholar]
- B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31 (2006) 61–73. [Google Scholar]
- C. Cui and G. Kanschat, Multigrid methods for the Stokes problem on GPU systems. Preprint arXiv:2410.09497 (2024). [Google Scholar]
- V.A. Dobrev, R.D. Lazarov, P.S. Vassilevski and L.T. Zikatanov, Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra App. 13 (2006) 753–770. [Google Scholar]
- G. Fu, An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Eng. 345 (2019) 502–517. [CrossRef] [Google Scholar]
- J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method. Numer. Math. 95 (2003) 527–550. [Google Scholar]
- B.T. Helenbrook and H.L. Atkins, Application of p-multigrid to discontinuous Galerkin formulations of the Poisson equation. AIAA J. 44 (2006) 566–575. [Google Scholar]
- V.E. Henson and U.M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41 (2002) 155–177. [Google Scholar]
- V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [CrossRef] [MathSciNet] [Google Scholar]
- G. Kanschat, Multilevel methods for discontinuous Galerkin FEM on locally refined meshes. Comput. Struct. 82 (2004) 2437–2445. [Google Scholar]
- G. Kanschat and Y. Mao, Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations. J. Numer. Math. 23 (2015) 51–66. [CrossRef] [MathSciNet] [Google Scholar]
- T. Kolev and W. Pazner, Conservative and accurate solution transfer between high-order and low-order refined finite element spaces. SIAM J. Sci. Comput. 44 (2022) A1–A27. [Google Scholar]
- M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw. 45 (2019) 1–40. [Google Scholar]
- J.M. Melenk, K. Gerdes and C. Schwab, Fully discrete hp-finite elements: fast quadrature. Comput. Methods Appl. Mech. Eng. 190 (2001) 4339–4364. [Google Scholar]
- S. Nepomnyaschikh, Decomposition and fictitious domains methods for elliptic boundary value problems, in Proceedings of the Fifth International Conference on Domain Decomposition Methods, edited by D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigt. Norfolk, Virginia (1991). [Google Scholar]
- S. Nepomnyaschikh, Domain decomposition methods, in Lectures on Advanced Computational Methods in Mechanics, edited by J. Kraus and U. Langer. de Gruyter (2007). [Google Scholar]
- S.A. Orszag, Spectral methods for problems in complex geometries. J. Comput. Phys. 37 (1980) 70–92. [Google Scholar]
- P. Oswald, On a BPX-preconditioner for P1 elements. Computing 51 (1993) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
- L.F. Pavarino, Domain decomposition algorithms for the p-version finite element method for elliptic problems. Ph.D. thesis, New York University (1992). [Google Scholar]
- L.F. Pavarino, Additive Schwarz methods for the p-version finite element method. Numer. Math. 66 (1993) 493–515. [CrossRef] [Google Scholar]
- W. Pazner, Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods. SIAM J. Sci. Comput. 42 (2020) A3055–A3083. [Google Scholar]
- W. Pazner and T. Kolev, Uniform subspace correction preconditioners for discontinuous Galerkin methods with hp-refinement. Communications on Applied Mathematics and Computation 4 (2022) 697–727. [Google Scholar]
- W. Pazner and P.-O. Persson, Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys. 354 (2018) 344–369. [Google Scholar]
- W. Pazner, T. Kolev and C.R. Dohrmann, Low-order preconditioning for the high-order finite element de Rham complex. SIAM J. Sci. Comput. 45 (2023) A675–A702. [Google Scholar]
- W. Pazner, T. Kolev and P.S. Vassilevski, Matrix-free high-performance saddle-point solvers for high-order problems in H(div). SIAM J. Sci. Comput. 46 (2024) B179–B204. [Google Scholar]
- J.W. Ruge and K. Stüben, Algebraic Multigrid, Chapter 4. SIAM (1987) 73–130. [Google Scholar]
- K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005) 401–407. [Google Scholar]
- H. Sundar, G. Stadler and G. Biros, Comparison of multigrid algorithms for high-order continuous finite element discretizations. Numer. Linear Algebra App. 22 (2015) 664–680. [Google Scholar]
- S.A. Teukolsky, Short note on the mass matrix for Gauss–Lobatto grid points. J. Comput. Phys. 283 (2015) 408–413. [Google Scholar]
- A. Toselli and O.B. Widlund, Domain Decomposition Methods – Algorithms and Theory. Springer Berlin Heidelberg (2005). [Google Scholar]
- J. Wang, Y. Wang and X. Ye, A robust numerical method for Stokes equations based on divergence-freeh H(div) finite element methods. SIAM J. Sci. Comput. 31 (2009) 2784–2802. [Google Scholar]
- J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56 (1996) 215–235. [CrossRef] [MathSciNet] [Google Scholar]
- J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. [CrossRef] [MathSciNet] [Google Scholar]
- J. Xu, The method of subspace corrections. J. Comput. Appl. Math. 128 (2001) 335–362. [Google Scholar]
- J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15 (2002) 573–598. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.