Free Access
Issue
ESAIM: M2AN
Volume 45, Number 3, May-June 2011
Page(s) 541 - 561
DOI https://doi.org/10.1051/m2an/2010066
Published online 30 November 2010
  1. Y. Ait-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 (2002) 223–262. [CrossRef] [MathSciNet]
  2. M. Alber, N. Chen, T. Glimm and P.M. Lushnikov, Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E 73 (2006) 051901. [CrossRef] [MathSciNet] [PubMed]
  3. W. E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet]
  4. W. E, D. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58 (2005) 1544–1585. [CrossRef]
  5. W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2 (2007) 367–450. [MathSciNet]
  6. R. Erban and H.G. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. SIAM Multiscale Model. Simul. 3 (2005) 362–394. [CrossRef]
  7. I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200 (2004) 605–638. [CrossRef] [MathSciNet]
  8. Y. Frederix and D. Roose, A drift-filtered approach to diffusion estimation for multiscale processes, in Coping with complexity: model reduction and data analysis, Lecture Notes in Computational Science and Engineering 75, Springer-Verlag (2010).
  9. Y. Frederix, G. Samaey, C. Vandekerckhove, T. Li, E. Nies and D. Roose, Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete Continuous Dyn. Syst. Ser. B 11 (2009) 855–874. [CrossRef]
  10. C. Gear, Projective integration methods for distributions. Technical report, NEC Research Institute (2001).
  11. C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732. [CrossRef] [MathSciNet]
  12. D. Givon, R. Kupferman and A. Stuart, Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55–R127. [CrossRef]
  13. R.M. Gray, Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2 (2005) 155–239. [CrossRef]
  14. B. Jourdain, C.L. Bris and T. Lelièvre, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid Mech. 122 (2004) 91–106. [CrossRef]
  15. I.G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications. Ann. Rev. Phys. Chem. 60 (2009) 321–344. [CrossRef] [PubMed]
  16. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [MathSciNet]
  17. H.C. Öttinger, B.H.A.A. van den Brule and M.A. Hulsen, Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255–261. [CrossRef]
  18. G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics 53. Springer, New York (2007).
  19. G.A. Pavliotis and A.M. Stuart, Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741–781. [CrossRef] [MathSciNet]
  20. Y. Pokern, A.M. Stuart and E. Vanden-Eijnden, Remarks on drift estimation for diffusion processes. SIAM Multiscale Model. Simul. 8 (2009) 69–95. [CrossRef]
  21. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, Second Edition, Springer (1989).
  22. M. Rousset and G. Samaey, Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. INRIA, inria-00425065, available at http://hal.inria.fr/inria-00425065/fr/ (2009).
  23. A. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Translations of mathematical monographs 78. AMS, Providence (1999).
  24. N. Van Kampen, Elimination of fast variables. Phys. Rep. 124 (1985) 69–160. [CrossRef] [MathSciNet]
  25. P. Van Leemput, W. Vanroose and D. Roose, Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6 (2007) 1234–1255. [CrossRef]
  26. E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385–391. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you