Free Access
Issue
ESAIM: M2AN
Volume 45, Number 3, May-June 2011
Page(s) 541 - 561
DOI https://doi.org/10.1051/m2an/2010066
Published online 30 November 2010
  1. Y. Ait-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 (2002) 223–262. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Alber, N. Chen, T. Glimm and P.M. Lushnikov, Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E 73 (2006) 051901. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. W. E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet] [Google Scholar]
  4. W. E, D. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58 (2005) 1544–1585. [CrossRef] [Google Scholar]
  5. W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2 (2007) 367–450. [MathSciNet] [Google Scholar]
  6. R. Erban and H.G. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. SIAM Multiscale Model. Simul. 3 (2005) 362–394. [CrossRef] [Google Scholar]
  7. I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200 (2004) 605–638. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Frederix and D. Roose, A drift-filtered approach to diffusion estimation for multiscale processes, in Coping with complexity: model reduction and data analysis, Lecture Notes in Computational Science and Engineering 75, Springer-Verlag (2010). [Google Scholar]
  9. Y. Frederix, G. Samaey, C. Vandekerckhove, T. Li, E. Nies and D. Roose, Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete Continuous Dyn. Syst. Ser. B 11 (2009) 855–874. [CrossRef] [Google Scholar]
  10. C. Gear, Projective integration methods for distributions. Technical report, NEC Research Institute (2001). [Google Scholar]
  11. C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Givon, R. Kupferman and A. Stuart, Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55–R127. [CrossRef] [Google Scholar]
  13. R.M. Gray, Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2 (2005) 155–239. [CrossRef] [Google Scholar]
  14. B. Jourdain, C.L. Bris and T. Lelièvre, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid Mech. 122 (2004) 91–106. [CrossRef] [Google Scholar]
  15. I.G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications. Ann. Rev. Phys. Chem. 60 (2009) 321–344. [CrossRef] [PubMed] [Google Scholar]
  16. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [MathSciNet] [Google Scholar]
  17. H.C. Öttinger, B.H.A.A. van den Brule and M.A. Hulsen, Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255–261. [CrossRef] [Google Scholar]
  18. G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics 53. Springer, New York (2007). [Google Scholar]
  19. G.A. Pavliotis and A.M. Stuart, Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741–781. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y. Pokern, A.M. Stuart and E. Vanden-Eijnden, Remarks on drift estimation for diffusion processes. SIAM Multiscale Model. Simul. 8 (2009) 69–95. [CrossRef] [Google Scholar]
  21. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, Second Edition, Springer (1989). [Google Scholar]
  22. M. Rousset and G. Samaey, Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. INRIA, inria-00425065, available at http://hal.inria.fr/inria-00425065/fr/ (2009). [Google Scholar]
  23. A. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Translations of mathematical monographs 78. AMS, Providence (1999). [Google Scholar]
  24. N. Van Kampen, Elimination of fast variables. Phys. Rep. 124 (1985) 69–160. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Van Leemput, W. Vanroose and D. Roose, Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6 (2007) 1234–1255. [CrossRef] [Google Scholar]
  26. E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385–391. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you